Suppr超能文献

采用统计方法对转诊至罗扬研究所的不孕女性子宫内膜异常进行验证偏倚校正

Verification Bias Correction in Endometrial Abnormalities in Infertile Women Referred to Royan Institute Using Statistical Methods.

作者信息

Niknejad Fatemeh, Ahmadi Firoozeh, Roudbari Masoud

机构信息

Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.

Department of Reproductive Imaging, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.

出版信息

Med J Islam Repub Iran. 2023 Nov 14;37:122. doi: 10.47176/mjiri.37.122. eCollection 2023.

Abstract

BACKGROUND

Verification bias is a common bias in the diagnostic accuracy of diagnostic tests and occurs when a number of individuals do not perform the gold standard test. In this study, we review the correcting methods of verification bias.

METHODS

In a cross-sectional study in 2020, 567 infertile women who were referred to Royan Research Institute were evaluated. The ultrasound is the performed test and the gold standard are hysteroscopy for some, and pathology for other abnormalities. For correcting verification bias conventional, Begg and Greens, Zhou, and logistic regression methods were used.

RESULTS

In the gold standard hysteroscopy test, the sensitivity (SEN) and specificity (SPEC) obtained in conventional, Begg and Greens, Zhou, and logistics Regression methods were (50%, 90.3%), (48%, 96%), (22%, 77%), (50%, 90%), and (72.8, 77) respectively. Furthermore, the area under the curve (AUC) index and kappa statistics were calculated as 70.2%, and 43.6% respectively. In the pathology gold standard test, the SEN and SPEC for the conventional methods, Begg and Greens, Zhou and logistics regression were (67.7%, 86.7%), (66%, 88%), (29%, 70%), (66.9%, 87.6%), and (73%, 83.9%) respectively. Also, the AUC index and kappa statistics were 77%, and 55% respectively.

CONCLUSION

In the study on endometrial abnormalities in infertile women, assuming that the missing data mechanism is random, the amount of bias in calculating SEN and SPEC is very low in the diagnostic tests calculated before and after correction, using Begg and Greens and logistic regression method. But Zhou's method gives rather large biased estimates.

摘要

背景

验证偏倚是诊断试验诊断准确性中常见的一种偏倚,当一些个体未进行金标准试验时就会出现。在本研究中,我们回顾了验证偏倚的校正方法。

方法

在一项2020年的横断面研究中,对转诊至罗扬研究所的567名不孕妇女进行了评估。超声作为实施的检测方法,对于某些情况金标准是宫腔镜检查,对于其他异常情况金标准是病理学检查。为校正验证偏倚,使用了传统方法、Begg和Greens法、周法以及逻辑回归方法。

结果

在金标准宫腔镜检查试验中,传统方法、Begg和Greens法、周法以及逻辑回归法所获得的灵敏度(SEN)和特异度(SPEC)分别为(50%,90.3%)、(48%,96%)、(22%,77%)、(50%,90%)以及(72.8,77)。此外,曲线下面积(AUC)指数和kappa统计量分别计算为70.2%和43.6%。在病理学金标准试验中,传统方法、Begg和Greens法、周法以及逻辑回归法的SEN和SPEC分别为(67.7%,86.7%)、(66%,88%)、(29%,70%)、(66.9%,87.6%)以及(73%,83.9%)。同样,AUC指数和kappa统计量分别为77%和55%。

结论

在对不孕妇女子宫内膜异常的研究中,假设缺失数据机制是随机的,使用Begg和Greens法以及逻辑回归法校正前后计算的诊断试验中,计算SEN和SPEC时的偏倚量非常低。但周法给出的偏倚估计值相当大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2425/10907048/c4f57b8a9402/mjiri-37-122-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验