Suppr超能文献

使用逆概率Bootstrap抽样对二元诊断测试进行部分验证偏差校正

Partial Verification Bias Correction Using Inverse Probability Bootstrap Sampling for Binary Diagnostic Tests.

作者信息

Arifin Wan Nor, Yusof Umi Kalsom

机构信息

School of Computer Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia.

Biostatistics and Research Methodology Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.

出版信息

Diagnostics (Basel). 2022 Nov 17;12(11):2839. doi: 10.3390/diagnostics12112839.

Abstract

In medical care, it is important to evaluate any new diagnostic test in the form of diagnostic accuracy studies. These new tests are compared to gold standard tests, where the performance of binary diagnostic tests is usually measured by sensitivity (Sn) and specificity (Sp). However, these accuracy measures are often biased owing to selective verification of the patients, known as partial verification bias (PVB). Inverse probability bootstrap (IPB) sampling is a general method to correct sampling bias in model-based analysis and produces debiased data for analysis. However, its utility in PVB correction has not been investigated before. The objective of this study was to investigate IPB in the context of PVB correction under the missing-at-random assumption for binary diagnostic tests. IPB was adapted for PVB correction, and tested and compared with existing methods using simulated and clinical data sets. The results indicated that IPB is accurate for Sn and Sp estimation as it showed low bias. However, IPB was less precise than existing methods as indicated by the higher standard error (SE). Despite this issue, it is recommended to use IPB when subsequent analysis with full data analytic methods is expected. Further studies must be conducted to reduce the SE.

摘要

在医疗保健中,以诊断准确性研究的形式评估任何新的诊断测试非常重要。这些新测试与金标准测试进行比较,二元诊断测试的性能通常通过灵敏度(Sn)和特异性(Sp)来衡量。然而,由于对患者的选择性验证,即所谓的部分验证偏倚(PVB),这些准确性测量往往存在偏差。逆概率引导(IPB)抽样是一种在基于模型的分析中校正抽样偏差的通用方法,并产生去偏数据用于分析。然而,其在PVB校正中的效用此前尚未得到研究。本研究的目的是在二元诊断测试的随机缺失假设下,研究PVB校正背景下的IPB。IPB被应用于PVB校正,并使用模拟和临床数据集与现有方法进行测试和比较。结果表明,IPB在Sn和Sp估计方面是准确的,因为它显示出低偏差。然而,如较高的标准误差(SE)所示,IPB的精度低于现有方法。尽管存在这个问题,但如果期望使用完整数据分析方法进行后续分析,建议使用IPB。必须进行进一步的研究以降低标准误差。

相似文献

1
Partial Verification Bias Correction Using Inverse Probability Bootstrap Sampling for Binary Diagnostic Tests.
Diagnostics (Basel). 2022 Nov 17;12(11):2839. doi: 10.3390/diagnostics12112839.
2
Correcting for partial verification bias in diagnostic accuracy studies: A tutorial using R.
Stat Med. 2022 Apr 30;41(9):1709-1727. doi: 10.1002/sim.9311. Epub 2022 Jan 18.
3
A robust method using propensity score stratification for correcting verification bias for binary tests.
Biostatistics. 2012 Jan;13(1):32-47. doi: 10.1093/biostatistics/kxr020. Epub 2011 Aug 18.
4
Using Inverse Probability Bootstrap Sampling to Eliminate Sample Induced Bias in Model Based Analysis of Unequal Probability Samples.
PLoS One. 2015 Jun 30;10(6):e0131765. doi: 10.1371/journal.pone.0131765. eCollection 2015.
5
Direct estimation of the area under the receiver operating characteristic curve with verification biased data.
Stat Med. 2020 Dec 30;39(30):4789-4820. doi: 10.1002/sim.8753. Epub 2020 Sep 17.
7
Multiple imputation to correct for partial verification bias revisited.
Stat Med. 2008 Dec 10;27(28):5880-9. doi: 10.1002/sim.3410.
8
Inverse probability weighting estimation of the volume under the ROC surface in the presence of verification bias.
Biom J. 2016 Nov;58(6):1338-1356. doi: 10.1002/bimj.201500225. Epub 2016 Jun 24.
9
Bayesian Estimation of Combined Accuracy for Tests with Verification Bias.
Diagnostics (Basel). 2011 Dec 15;1(1):53-76. doi: 10.3390/diagnostics1010053.
10
Studies of diagnostic test accuracy: Partial verification bias and test result-based sampling.
J Clin Epidemiol. 2022 May;145:179-182. doi: 10.1016/j.jclinepi.2022.01.022. Epub 2022 Feb 3.

引用本文的文献

1
Verification Bias Correction in Endometrial Abnormalities in Infertile Women Referred to Royan Institute Using Statistical Methods.
Med J Islam Repub Iran. 2023 Nov 14;37:122. doi: 10.47176/mjiri.37.122. eCollection 2023.

本文引用的文献

3
Statistical methods for evaluating the fine needle aspiration cytology procedure in breast cancer diagnosis.
BMC Med Res Methodol. 2022 Feb 6;22(1):40. doi: 10.1186/s12874-022-01506-y.
4
Studies of diagnostic test accuracy: Partial verification bias and test result-based sampling.
J Clin Epidemiol. 2022 May;145:179-182. doi: 10.1016/j.jclinepi.2022.01.022. Epub 2022 Feb 3.
5
Correcting for partial verification bias in diagnostic accuracy studies: A tutorial using R.
Stat Med. 2022 Apr 30;41(9):1709-1727. doi: 10.1002/sim.9311. Epub 2022 Jan 18.
7
Using simulation studies to evaluate statistical methods.
Stat Med. 2019 May 20;38(11):2074-2102. doi: 10.1002/sim.8086. Epub 2019 Jan 16.
8
Verification bias.
BMJ Evid Based Med. 2018 Apr;23(2):54-55. doi: 10.1136/bmjebm-2018-110919. Epub 2018 Feb 27.
9
Missing data and multiple imputation in clinical epidemiological research.
Clin Epidemiol. 2017 Mar 15;9:157-166. doi: 10.2147/CLEP.S129785. eCollection 2017.
10
Using Inverse Probability Bootstrap Sampling to Eliminate Sample Induced Bias in Model Based Analysis of Unequal Probability Samples.
PLoS One. 2015 Jun 30;10(6):e0131765. doi: 10.1371/journal.pone.0131765. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验