Suppr超能文献

利用coRmiT探索疾病中的miRNA-靶基因对检测。

Exploring miRNA-target gene pair detection in disease with coRmiT.

作者信息

Cordoba-Caballero Jose, Perkins James R, García-Criado Federico, Gallego Diana, Navarro-Sánchez Alicia, Moreno-Estellés Mireia, Garcés Concepción, Bonet Fernando, Romá-Mateo Carlos, Toro Rocio, Perez Belén, Sanz Pascual, Kohl Matthias, Rojano Elena, Seoane Pedro, Ranea Juan A G

机构信息

Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain.

Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, Cádiz, Spain.

出版信息

Brief Bioinform. 2024 Jan 22;25(2). doi: 10.1093/bib/bbae060.

Abstract

A wide range of approaches can be used to detect micro RNA (miRNA)-target gene pairs (mTPs) from expression data, differing in the ways the gene and miRNA expression profiles are calculated, combined and correlated. However, there is no clear consensus on which is the best approach across all datasets. Here, we have implemented multiple strategies and applied them to three distinct rare disease datasets that comprise smallRNA-Seq and RNA-Seq data obtained from the same samples, obtaining mTPs related to the disease pathology. All datasets were preprocessed using a standardized, freely available computational workflow, DEG_workflow. This workflow includes coRmiT, a method to compare multiple strategies for mTP detection. We used it to investigate the overlap of the detected mTPs with predicted and validated mTPs from 11 different databases. Results show that there is no clear best strategy for mTP detection applicable to all situations. We therefore propose the integration of the results of the different strategies by selecting the one with the highest odds ratio for each miRNA, as the optimal way to integrate the results. We applied this selection-integration method to the datasets and showed it to be robust to changes in the predicted and validated mTP databases. Our findings have important implications for miRNA analysis. coRmiT is implemented as part of the ExpHunterSuite Bioconductor package available from https://bioconductor.org/packages/ExpHunterSuite.

摘要

可以使用多种方法从表达数据中检测微小RNA(miRNA)-靶基因对(mTPs),这些方法在基因和miRNA表达谱的计算、组合和关联方式上有所不同。然而,对于所有数据集而言哪种方法是最佳方法,目前尚无明确的共识。在此,我们实施了多种策略,并将其应用于三个不同的罕见病数据集,这些数据集包含从相同样本中获得的smallRNA-Seq和RNA-Seq数据,从而获得了与疾病病理相关的mTPs。所有数据集均使用标准化的、可免费获取的计算工作流程DEG_workflow进行预处理。该工作流程包括coRmiT,这是一种比较多种mTP检测策略的方法。我们用它来研究检测到的mTPs与来自11个不同数据库的预测和验证的mTPs之间的重叠情况。结果表明,不存在适用于所有情况的明确最佳mTP检测策略。因此,我们建议通过为每个miRNA选择优势比最高的策略来整合不同策略的结果,作为整合结果的最佳方式。我们将这种选择-整合方法应用于数据集,并表明它对预测和验证的mTP数据库的变化具有鲁棒性。我们的发现对miRNA分析具有重要意义。coRmiT作为ExpHunterSuite Bioconductor软件包的一部分实现,可从https://bioconductor.org/packages/ExpHunterSuite获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0305/10939301/73cce46c919a/bbae060f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验