Central European Institute of Technology (CEITEC), Masaryk University, 60177 Brno, Czech Republic.
Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 61137 Brno, Czech Republic.
Genes (Basel). 2022 Dec 9;13(12):2323. doi: 10.3390/genes13122323.
The binding of microRNAs (miRNAs) to their target sites is a complex process, mediated by the Argonaute (Ago) family of proteins. The prediction of miRNA:target site binding is an important first step for any miRNA target prediction algorithm. To date, the potential for miRNA:target site binding is evaluated using either co-folding free energy measures or heuristic approaches, based on the identification of binding 'seeds', i.e., continuous stretches of binding corresponding to specific parts of the miRNA. The limitations of both these families of methods have produced generations of miRNA target prediction algorithms that are primarily focused on 'canonical' seed targets, even though unbiased experimental methods have shown that only approximately half of in vivo miRNA targets are 'canonical'. Herein, we present miRBind, a deep learning method and web server that can be used to accurately predict the potential of miRNA:target site binding. We trained our method using seed-agnostic experimental data and show that our method outperforms both seed-based approaches and co-fold free energy approaches. The full code for the development of miRBind and a freely accessible web server are freely available.
miRNAs(微 RNA)与其靶位点的结合是一个复杂的过程,由 Argonaute(AGO)蛋白家族介导。miRNA:靶位结合的预测是任何 miRNA 靶位预测算法的重要第一步。迄今为止,miRNA:靶位结合的潜力是使用共折叠自由能度量或启发式方法来评估的,这些方法基于结合“种子”的识别,即与 miRNA 的特定部分相对应的连续结合片段。这两种方法的局限性导致了几代 miRNA 靶位预测算法的产生,这些算法主要集中在“经典”种子靶位上,尽管无偏实验方法表明,只有大约一半的体内 miRNA 靶位是“经典”的。本文中,我们提出了 miRBind,一种可以准确预测 miRNA:靶位结合潜力的深度学习方法和网络服务器。我们使用无种子依赖的实验数据来训练我们的方法,并表明我们的方法优于基于种子的方法和共折叠自由能方法。miRBind 的开发的完整代码和一个免费访问的网络服务器均可免费获得。