Suppr超能文献

iMir:一个集成的小 RNA-Seq 高通量分析小分子非编码 RNA 数据的综合分析平台。

iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq.

机构信息

Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 1, Salerno, Baronissi, Italy.

出版信息

BMC Bioinformatics. 2013 Dec 13;14:362. doi: 10.1186/1471-2105-14-362.

Abstract

BACKGROUND

Qualitative and quantitative analysis of small non-coding RNAs by next generation sequencing (smallRNA-Seq) represents a novel technology increasingly used to investigate with high sensitivity and specificity RNA population comprising microRNAs and other regulatory small transcripts. Analysis of smallRNA-Seq data to gather biologically relevant information, i.e. detection and differential expression analysis of known and novel non-coding RNAs, target prediction, etc., requires implementation of multiple statistical and bioinformatics tools from different sources, each focusing on a specific step of the analysis pipeline. As a consequence, the analytical workflow is slowed down by the need for continuous interventions by the operator, a critical factor when large numbers of datasets need to be analyzed at once.

RESULTS

We designed a novel modular pipeline (iMir) for comprehensive analysis of smallRNA-Seq data, comprising specific tools for adapter trimming, quality filtering, differential expression analysis, biological target prediction and other useful options by integrating multiple open source modules and resources in an automated workflow. As statistics is crucial in deep-sequencing data analysis, we devised and integrated in iMir tools based on different statistical approaches to allow the operator to analyze data rigorously. The pipeline created here proved to be efficient and time-saving than currently available methods and, in addition, flexible enough to allow the user to select the preferred combination of analytical steps. We present here the results obtained by applying this pipeline to analyze simultaneously 6 smallRNA-Seq datasets from either exponentially growing or growth-arrested human breast cancer MCF-7 cells, that led to the rapid and accurate identification, quantitation and differential expression analysis of ~450 miRNAs, including several novel miRNAs and isomiRs, as well as identification of the putative mRNA targets of differentially expressed miRNAs. In addition, iMir allowed also the identification of ~70 piRNAs (piwi-interacting RNAs), some of which differentially expressed in proliferating vs growth arrested cells.

CONCLUSION

The integrated data analysis pipeline described here is based on a reliable, flexible and fully automated workflow, useful to rapidly and efficiently analyze high-throughput smallRNA-Seq data, such as those produced by the most recent high-performance next generation sequencers. iMir is available at http://www.labmedmolge.unisa.it/inglese/research/imir.

摘要

背景

下一代测序(smallRNA-Seq)对小非编码 RNA 的定性和定量分析代表了一种新兴技术,越来越多地用于以高灵敏度和特异性研究包含 microRNAs 和其他调控性小转录本的 RNA 群体。为了收集有生物学意义的信息,对 smallRNA-Seq 数据进行分析,例如检测和差异表达分析已知和新的非编码 RNA、靶标预测等,需要实现来自不同来源的多个统计和生物信息学工具,每个工具都侧重于分析管道的特定步骤。因此,分析工作流程因操作员需要不断干预而减慢,当需要同时分析大量数据集时,这是一个关键因素。

结果

我们设计了一种用于全面分析 smallRNA-Seq 数据的新型模块化管道(iMir),该管道包括特定的工具,用于适配器修剪、质量过滤、差异表达分析、生物靶标预测和其他有用的选项,方法是将多个开源模块和资源集成到自动化工作流程中。由于统计在深度测序数据分析中至关重要,我们设计并集成了基于不同统计方法的工具,以便操作员能够严格地分析数据。与当前可用方法相比,这里创建的管道被证明是高效且节省时间的,此外,它足够灵活,允许用户选择首选的分析步骤组合。我们在此介绍了通过将此管道应用于同时分析来自指数生长或生长停滞的人乳腺癌 MCF-7 细胞的 6 个 smallRNA-Seq 数据集来获得的结果,这导致了对450 个 miRNA 的快速准确识别、定量和差异表达分析,包括几个新的 miRNA 和 isomiRs,以及鉴定差异表达 miRNA 的潜在 mRNA 靶标。此外,iMir 还允许鉴定70 个 piRNAs(piwi 相互作用 RNA),其中一些在增殖细胞与生长停滞细胞中的表达不同。

结论

这里描述的集成数据分析管道基于可靠、灵活和完全自动化的工作流程,可用于快速有效地分析高通量 smallRNA-Seq 数据,例如最近高性能下一代测序仪生成的数据。iMir 可在 http://www.labmedmolge.unisa.it/inglese/research/imir 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/189f/3878829/4420258ee78f/1471-2105-14-362-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验