Suppr超能文献

BREATH-Net:一种使用带有转换器的双向编码器进行 NO 预测的新型深度学习框架。

BREATH-Net: a novel deep learning framework for NO prediction using bi-directional encoder with transformer.

机构信息

Biometric Research Laboratory, Department of Information Technology, Delhi Technological University, Bawana Road, Delhi, 110042, India.

出版信息

Environ Monit Assess. 2024 Mar 4;196(4):340. doi: 10.1007/s10661-024-12455-y.

Abstract

Air pollution poses a significant challenge in numerous urban regions, negatively affecting human well-being. Nitrogen dioxide (NO) is a prevalent atmospheric pollutant that can potentially exacerbate respiratory ailments and cardiovascular disorders and contribute to cancer development. The present study introduces a novel approach for monitoring and predicting Delhi's nitrogen dioxide concentrations by leveraging satellite data and ground data from the Sentinel 5P satellite and monitoring stations. The research gathers satellite and monitoring data over 3 years for evaluation. Exploratory data analysis (EDA) methods are employed to comprehensively understand the data and discern any discernible patterns and trends in nitrogen dioxide levels. The data subsequently undergoes pre-processing and scaling utilizing appropriate techniques, such as MinMaxScaler, to optimize the model's performance. The proposed forecasting model uses a hybrid architecture of the Transformer and BiLSTM models called BREATH-Net. BiLSTM models exhibit a strong aptitude for effectively managing sequential data by adeptly capturing dependencies in both the forward and backward directions. Conversely, transformers excel in capturing extensive relationships over extended distances in temporal data. The results of this study will illustrate the proposed model's efficacy in predicting the levels of NO in Delhi. If effectively executed, this model can significantly enhance strategies for controlling urban air quality. The findings of this research show a significant improvement of RMSE = 9.06 compared to other state-of-the-art models. This study's primary objective is to contribute to mitigating respiratory health issues resulting from air pollution through satellite data and deep learning methodologies.

摘要

空气污染在许多城市地区构成了重大挑战,对人类健康产生负面影响。二氧化氮(NO)是一种普遍的大气污染物,可能会加剧呼吸道疾病和心血管疾病,并促进癌症的发展。本研究提出了一种利用卫星数据和 Sentinel 5P 卫星及监测站的地面数据监测和预测新德里二氧化氮浓度的新方法。该研究在 3 年内收集了卫星和监测数据进行评估。采用探索性数据分析(EDA)方法全面了解数据,并发现二氧化氮水平的任何明显模式和趋势。随后,使用 MinMaxScaler 等适当技术对数据进行预处理和缩放,以优化模型的性能。所提出的预测模型使用 Transformer 和 BiLSTM 模型的混合架构,称为 BREATH-Net。BiLSTM 模型通过巧妙地捕获前向和后向的依赖性,表现出有效管理序列数据的强大能力。相比之下,Transformer 在时间数据中能够捕获远距离的广泛关系。本研究的结果将说明所提出模型在预测新德里的 NO 水平方面的有效性。如果执行得当,该模型可以显著增强控制城市空气质量的策略。本研究的主要目的是通过卫星数据和深度学习方法,为缓解空气污染导致的呼吸道健康问题做出贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验