The IT Electronics Eleventh Design & Research Institute Scientific and Technological Engineering Co., LTD, Chengdu, 610021, People's Republic of China.
Faculty of Geoscience and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
Environ Sci Pollut Res Int. 2024 Apr;31(16):24263-24281. doi: 10.1007/s11356-024-32483-y. Epub 2024 Mar 4.
As reported, the persistent toxic and harmful pollutant bisphenol A (BPA) from industrial emissions has been consistently found in aquatic environments inhabited by humans. Periodate (PI)-based advanced oxidation processes (AOPs) have been employed to degrade BPA, although activating PI proves more challenging compared to other oxidants. A novel nano iron metal catalyst, sulfided nanoscale iron-nickel bimetallic nanoparticle supported on biocarbon (S-(nFe-Ni)/BC) was synthesized and utilized to activate PI for the removal of BPA. The morphology, structure, and composition of S-(nFe-Ni)/BC were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy-energy dispersive spectrometer (SEM-EDS), and fourier-transform infrared spectrum (FTIR). The catalyst demonstrates an excellent ability to activate PI, achieving a BPA removal efficacy of 86.4%, accompanied by a 33% reduction in total organic carbon (TOC) in the {S-(nFe-Ni)/BC}/PI system. BPA degradation exhibited a significant change at the 5-min mark. In the first stage (0-5 min), nonlinear dynamic fitting research, combined with scavenging experiments, unveiled the competitive degradation of pollutants primarily driven by iodate radical ( ), singlet oxygen , and hydroxyl radical ( ). The competitive dynamics aligned with the ExpAssoc model. The contribution rates of different active species during the second stage (5-120 min) were calculated. The contributions of main species to BPA removal follow the order of > > throughout the entire process. The influence of various parameters, such as the dosage of S-(nFe-Ni)/BC, initial PI concentration, BPA concentration, pH, temperature, and the presence of coexisting anions, was also examined. Finally, a plausible reaction mechanism in the system is proposed, suggesting that the {S-(nFe-Ni)/BC}/PI system involves a heterogeneous synergistic reaction occurring primarily on the surface of S-(nFe-Ni)/BC. Therefore, this study proposes a promising approach for PI-based AOPs to degrade organic pollutants, aiming to mitigate the irreversible harm caused by such pollutants to organisms and the environment.
据报道,工业排放的持久性有毒有害物质双酚 A(BPA)一直存在于人类居住的水生环境中。过碘酸盐(PI)基高级氧化工艺(AOPs)已被用于降解 BPA,尽管与其他氧化剂相比,激活 PI 更具挑战性。一种新型纳米铁金属催化剂,负载在生物炭上的硫化纳米尺度铁-镍双金属纳米颗粒(S-(nFe-Ni)/BC)被合成并用于激活 PI 以去除 BPA。使用 X 射线衍射(XRD)、X 射线光电子能谱(XPS)、扫描电子显微镜-能量色散谱(SEM-EDS)和傅里叶变换红外光谱(FTIR)对 S-(nFe-Ni)/BC 的形态、结构和组成进行了表征。该催化剂表现出优异的激活 PI 的能力,在 {S-(nFe-Ni)/BC}/PI 体系中,BPA 的去除率达到 86.4%,总有机碳(TOC)降低了 33%。BPA 降解在 5 分钟时发生显著变化。在第一阶段(0-5 分钟),非线性动态拟合研究结合猝灭实验揭示了污染物主要由碘酸盐自由基( )、单线态氧( )和羟基自由基( )竞争降解。竞争动力学与 ExpAssoc 模型一致。计算了第二阶段(5-120 分钟)不同活性物种的贡献率。在整个过程中,不同活性物种对 BPA 去除的贡献率顺序为 > > 。还考察了各种参数的影响,如 S-(nFe-Ni)/BC 的用量、初始 PI 浓度、BPA 浓度、pH 值、温度和共存阴离子的存在。最后,提出了该体系中的一个可能的反应机制,表明{S-(nFe-Ni)/BC}/PI 体系涉及主要发生在 S-(nFe-Ni)/BC 表面的多相协同反应。因此,本研究提出了一种基于 PI 的 AOPs 降解有机污染物的有前途的方法,旨在减轻此类污染物对生物和环境造成的不可逆转的危害。