Suppr超能文献

双光敏剂协同作用助力氧化铟在环境光照射下实现高性能一氧化氮传感的光激活

Dual-Photosensitizer Synergy Empowers Ambient Light Photoactivation of Indium Oxide for High-Performance NO Sensing.

作者信息

Park Seyeon, Kim Minhyun, Lim Yunsung, Oh DongHwan, Ahn Jaewan, Park Chungseong, Woo Sungyoon, Jung WooChul, Kim Jihan, Kim Il-Doo

机构信息

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea.

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea.

出版信息

Adv Mater. 2024 Jun;36(24):e2313731. doi: 10.1002/adma.202313731. Epub 2024 Mar 10.

Abstract

Light-activated chemiresistors offer a powerful approach to achieving lower-temperature gas sensing with unprecedented sensitivities. However, an incomplete understanding of how photoexcited charge carriers enhance sensitivity obstructs the rational design of high-performance sensors, impeding the practical utilization under commonly accessible light sources instead of ultraviolet or higher-energy sources. Here, a rational approach is presented to modulate the electronic properties of the parent metal oxide phase, exemplified by this model system of Bi-doped InO nanofibers decorated with Au nanoparticles (NPs) that exhibit superior NO sensing performance. Bi doping introduces mid-gap energy levels into InO, promoting photoactivation even under visible blue light. Additionally, green-absorbing plasmonic Au NPs facilitate electron transfer across the heterojunction, extending the photoactive region toward the green light. It is revealed that the direct involvement of photogenerated charge carriers in gas adsorption and desorption processes is pivotal for enhancing gas sensing performance. Owing to the synergistic interplay between the Bi dopants and the Au NPs, the Au-BiInO (x = 0.04) sensing layers attain impressive response values (R/R = 104 at 0.6 ppm NO) under green light illumination and demonstrate practical viability through evaluation under simulated mixed-light conditions, all of which significantly outperforms previously reported visible light-activated NO sensors.

摘要

光激活化学电阻器为实现低温气体传感提供了一种强大的方法,具有前所未有的灵敏度。然而,对光激发电荷载流子如何提高灵敏度的理解不完整阻碍了高性能传感器的合理设计,阻碍了在普通可用光源而非紫外或更高能量光源下的实际应用。在此,提出了一种合理的方法来调节母体金属氧化物相的电子性质,以这种用金纳米颗粒(NPs)修饰的Bi掺杂InO纳米纤维的模型系统为例,该系统表现出优异的NO传感性能。Bi掺杂将中间能隙能级引入InO,即使在可见蓝光下也能促进光激活。此外,吸收绿光的等离子体金纳米颗粒促进电子在异质结上转移,将光活性区域扩展到绿光。结果表明,光生电荷载流子直接参与气体吸附和解吸过程对于提高气体传感性能至关重要。由于Bi掺杂剂和金纳米颗粒之间的协同相互作用,Au-BiInO(x = 0.04)传感层在绿光照射下获得了令人印象深刻的响应值(在0.6 ppm NO下R/R = 104),并通过在模拟混合光条件下的评估证明了实际可行性,所有这些都显著优于先前报道的可见光激活NO传感器。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验