Department of Mathematics, Harvard University, Cambridge, MA, United States of America.
PLoS One. 2024 Mar 4;19(3):e0297964. doi: 10.1371/journal.pone.0297964. eCollection 2024.
Wolbachia is an endosymbiont bacterium present in many insect species. When Wolbachia-carrying male Aedes aegypti mosquitoes mate with non-carrier females, their embryos are not viable due to cytoplasmic incompatibility. This phenomenon has been exploited successfully for the purpose of controlling mosquito populations and the spread of mosquito-borne illnesses: Wolbachia carriers are bred and released into the environment. Because Wolbachia is not harmful to humans, this method of mosquito control is regarded as a safer alternative to pesticide spraying. In this article, we introduce a mathematical framework for exploring (i) whether a one-time release of Wolbachia carriers can elicit a sustained presence of carriers near the release site, and (ii) the extent to which spatial propagation of carriers may allow them to establish fixation in other territories. While some prior studies have formulated mosquito dispersal models using advection-reaction-diffusion PDEs, the predictive power of such models requires careful ecological mapping: advection and diffusion coefficients exhibit significant spatial dependence due to heterogeneity of resources and topography. Here, we adopt a courser-grained view, regarding the environment as a network of discrete, diffusively-coupled "habitats"-distinct zones of high mosquito density such as stagnant ponds. We extend two previously published single-habitat mosquito models to multiple habitats, and calculate rates of migration between pairs of habitats using dispersal kernels. Our primary results are quantitative estimates regarding how the success of carrier fixation in one or more habitats is determined by: the number of carriers released, sizes of habitats, distances between habitats, and the rate of migration between habitats. Besides yielding sensible and potentially useful predictions regarding the success of Wolbachia-based control, our framework applies to other approaches (e.g., gene drives) and contexts beyond the realm of insect pest control.
沃尔巴克氏体是一种存在于许多昆虫物种中的内共生细菌。当携带沃尔巴克氏体的埃及伊蚊雄蚊与非携带者雌蚊交配时,由于细胞质不相容性,它们的胚胎无法存活。这种现象已被成功用于控制蚊子种群和蚊媒疾病的传播:携带沃尔巴克氏体的蚊子被繁殖并释放到环境中。由于沃尔巴克氏体对人类无害,因此这种控制蚊子的方法被认为是喷洒农药的更安全替代方法。在本文中,我们引入了一个数学框架,用于探讨(i)一次性释放沃尔巴克氏体携带者是否可以在释放点附近引起携带者的持续存在,以及(ii)载体的空间传播在多大程度上可以使它们在其他地区建立固定种群。虽然一些先前的研究已经使用对流-反应-扩散 PDE 来制定蚊子扩散模型,但这些模型的预测能力需要仔细的生态映射:由于资源和地形的异质性,对流和扩散系数表现出显著的空间依赖性。在这里,我们采用更粗糙的观点,将环境视为离散的、扩散耦合的“栖息地”网络 - 例如死水池塘等高蚊密度的区域。我们将两个以前发表的单一栖息地蚊子模型扩展到多个栖息地,并使用扩散核计算栖息地之间的迁移率。我们的主要结果是关于在一个或多个栖息地中固定载体的成功率如何取决于以下因素的定量估计:释放的载体数量、栖息地的大小、栖息地之间的距离以及栖息地之间的迁移率。除了对基于沃尔巴克氏体的控制的成功产生合理且可能有用的预测外,我们的框架还适用于昆虫害虫防治以外的其他方法(例如基因驱动)和背景。