Suppr超能文献

利用深度学习进行诱导契合酶的上下文相关设计可产生表达良好、热稳定和活性高的酶。

Context-dependent design of induced-fit enzymes using deep learning generates well-expressed, thermally stable and active enzymes.

机构信息

Enzymit Ltd., Ness-Ziona 7403626, Israel.

出版信息

Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2313809121. doi: 10.1073/pnas.2313809121. Epub 2024 Mar 4.

Abstract

The potential of engineered enzymes in industrial applications is often limited by their expression levels, thermal stability, and catalytic diversity. De novo enzyme design faces challenges due to the complexity of enzymatic catalysis. An alternative approach involves expanding natural enzyme capabilities for new substrates and parameters. Here, we introduce CoSaNN (Conformation Sampling using Neural Network), an enzyme design strategy using deep learning for structure prediction and sequence optimization. CoSaNN controls enzyme conformations to expand chemical space beyond simple mutagenesis. It employs a context-dependent approach for generating enzyme designs, considering non-linear relationships in sequence and structure space. We also developed SolvIT, a graph NN predicting protein solubility in , optimizing enzyme expression selection from larger design sets. Using this method, we engineered enzymes with superior expression levels, with 54% expressed in , and increased thermal stability, with over 30% having higher Tm than the template, with no high-throughput screening. Our research underscores AI's transformative role in protein design, capturing high-order interactions and preserving allosteric mechanisms in extensively modified enzymes, and notably enhancing expression success rates. This method's ease of use and efficiency streamlines enzyme design, opening broad avenues for biotechnological applications and broadening field accessibility.

摘要

工程酶在工业应用中的潜力通常受到其表达水平、热稳定性和催化多样性的限制。由于酶催化的复杂性,从头设计酶面临挑战。一种替代方法涉及扩展天然酶的能力,以适应新的底物和参数。在这里,我们引入了 CoSaNN(使用神经网络进行构象采样),这是一种使用深度学习进行结构预测和序列优化的酶设计策略。CoSaNN 通过控制酶构象来扩展化学空间,超越简单的诱变。它采用了一种上下文相关的方法来生成酶设计,考虑了序列和结构空间中的非线性关系。我们还开发了 SolvIT,这是一种用于预测蛋白质在 中的溶解度的图神经网络,可以从更大的设计集中优化酶表达的选择。使用这种方法,我们设计了具有更高表达水平的酶,其中 54%在 中表达,并且提高了热稳定性,超过 30%的酶的 Tm 比模板高,而无需进行高通量筛选。我们的研究强调了人工智能在蛋白质设计中的变革作用,它可以捕捉高级相互作用,并在广泛修饰的酶中保留变构机制,显著提高表达成功率。这种方法的易用性和效率简化了酶设计,为生物技术应用开辟了广阔的途径,并拓宽了领域的可及性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d3/10945820/7e0d2025a991/pnas.2313809121fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验