Suppr超能文献

通过功能转录网络的迁移学习进行细胞重编程设计。

Cell reprogramming design by transfer learning of functional transcriptional networks.

机构信息

Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208.

Center for Network Dynamics, Northwestern University, Evanston, IL 60208.

出版信息

Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2312942121. doi: 10.1073/pnas.2312942121. Epub 2024 Mar 4.

Abstract

Recent developments in synthetic biology, next-generation sequencing, and machine learning provide an unprecedented opportunity to rationally design new disease treatments based on measured responses to gene perturbations and drugs to reprogram cells. The main challenges to seizing this opportunity are the incomplete knowledge of the cellular network and the combinatorial explosion of possible interventions, both of which are insurmountable by experiments. To address these challenges, we develop a transfer learning approach to control cell behavior that is pre-trained on transcriptomic data associated with human cell fates, thereby generating a model of the network dynamics that can be transferred to specific reprogramming goals. The approach combines transcriptional responses to gene perturbations to minimize the difference between a given pair of initial and target transcriptional states. We demonstrate our approach's versatility by applying it to a microarray dataset comprising >9,000 microarrays across 54 cell types and 227 unique perturbations, and an RNASeq dataset consisting of >10,000 sequencing runs across 36 cell types and 138 perturbations. Our approach reproduces known reprogramming protocols with an AUROC of 0.91 while innovating over existing methods by pre-training an adaptable model that can be tailored to specific reprogramming transitions. We show that the number of gene perturbations required to steer from one fate to another increases with decreasing developmental relatedness and that fewer genes are needed to progress along developmental paths than to regress. These findings establish a proof-of-concept for our approach to computationally design control strategies and provide insights into how gene regulatory networks govern phenotype.

摘要

合成生物学、下一代测序和机器学习的最新进展为基于基因扰动和药物对细胞的测量反应来合理设计新的疾病治疗方法提供了前所未有的机会,以重新编程细胞。抓住这一机会的主要挑战是对细胞网络的知识不完整和可能干预的组合爆炸,这两个挑战都是实验无法克服的。为了解决这些挑战,我们开发了一种转移学习方法来控制细胞行为,该方法在与人类细胞命运相关的转录组数据上进行了预训练,从而生成了可以转移到特定重编程目标的网络动态模型。该方法结合了基因扰动的转录反应,以最小化给定初始和目标转录状态对之间的差异。我们通过将其应用于包含 54 种细胞类型和 227 种独特扰动的 >9,000 个微阵列数据集和包含 36 种细胞类型和 138 种扰动的 >10,000 个测序运行的 RNASeq 数据集来证明我们方法的多功能性。我们的方法通过预训练可适应特定重编程转换的模型,重现了已知的重编程方案,AUROC 为 0.91,同时通过创新超越了现有方法。我们表明,从一种命运转向另一种命运所需的基因扰动数量随着发育相关性的降低而增加,并且沿着发育路径前进所需的基因比回归所需的基因少。这些发现为我们的计算设计控制策略的方法提供了概念验证,并提供了有关基因调控网络如何控制表型的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04bd/10945810/e858693fad92/pnas.2312942121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验