Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Computational Biology, Munich, Germany.
Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
Mol Syst Biol. 2023 Jun 12;19(6):e11517. doi: 10.15252/msb.202211517. Epub 2023 May 8.
Recent advances in multiplexed single-cell transcriptomics experiments facilitate the high-throughput study of drug and genetic perturbations. However, an exhaustive exploration of the combinatorial perturbation space is experimentally unfeasible. Therefore, computational methods are needed to predict, interpret, and prioritize perturbations. Here, we present the compositional perturbation autoencoder (CPA), which combines the interpretability of linear models with the flexibility of deep-learning approaches for single-cell response modeling. CPA learns to in silico predict transcriptional perturbation response at the single-cell level for unseen dosages, cell types, time points, and species. Using newly generated single-cell drug combination data, we validate that CPA can predict unseen drug combinations while outperforming baseline models. Additionally, the architecture's modularity enables incorporating the chemical representation of the drugs, allowing the prediction of cellular response to completely unseen drugs. Furthermore, CPA is also applicable to genetic combinatorial screens. We demonstrate this by imputing in silico 5,329 missing combinations (97.6% of all possibilities) in a single-cell Perturb-seq experiment with diverse genetic interactions. We envision CPA will facilitate efficient experimental design and hypothesis generation by enabling in silico response prediction at the single-cell level and thus accelerate therapeutic applications using single-cell technologies.
近年来,多重化单细胞转录组学实验的进展促进了高通量药物和遗传扰动研究。然而,对组合扰动空间的详尽探索在实验上是不可行的。因此,需要计算方法来预测、解释和优先考虑扰动。在这里,我们提出了组合扰动自动编码器(CPA),它将线性模型的可解释性与深度学习方法的灵活性结合起来,用于单细胞反应建模。CPA 学习在看不见的剂量、细胞类型、时间点和物种上,在计算机上预测单细胞转录扰动反应。使用新生成的单细胞药物组合数据,我们验证了 CPA 可以预测看不见的药物组合,同时优于基线模型。此外,该架构的模块化使其能够纳入药物的化学表示,从而能够预测对完全看不见的药物的细胞反应。此外,CPA 也适用于遗传组合筛选。我们通过在一个具有多种遗传相互作用的单细胞 Perturb-seq 实验中,对 5329 个缺失组合(所有可能性的 97.6%)进行计算机内插来证明这一点。我们设想,通过在单细胞水平上进行计算机内预测,CPA 将有助于高效的实验设计和假设生成,从而加速使用单细胞技术的治疗应用。