Suppr超能文献

进化稳定的基因组特征。

The genomic signatures of evolutionary stasis.

机构信息

Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States.

Stamford Museum and Nature Center, Stamford, CT, United States.

出版信息

Evolution. 2024 May 1;78(5):821-834. doi: 10.1093/evolut/qpae028.

Abstract

Evolutionary stasis characterizes lineages that seldom speciate and show little phenotypic change over long stretches of geological time. Although lineages that appear to exhibit evolutionary stasis are often called living fossils, no single mechanism is thought to be responsible for their slow rates of morphological evolution and low species diversity. Some analyses of molecular evolutionary rates in a handful of living fossil lineages have indicated that these clades exhibit slow rates of genomic change. Here, we investigate mechanisms of evolutionary stasis using a dataset of 1,105 exons for 481 vertebrate species. We demonstrate that two ancient clades of ray-finned fishes classically called living fossils, gars and sturgeons, exhibit the lowest rates of molecular substitution in protein-coding genes among all jawed vertebrates. Comparably low rates of evolution are observed at fourfold degenerate sites in gars and sturgeons, implying a mechanism of stasis decoupled from selection that we speculate is linked to a highly effective DNA repair apparatus. We show that two gar species last sharing common ancestry over 100 million years ago produce morphologically intermediate and fertile hybrids in the wild. This makes gars the oldest naturally hybridizing divergence among eukaryotes and supports a theoretical prediction that slow rates of nucleotide substitution across the genome slow the accumulation of genetic incompatibilities, enabling hybridization across deeply divergent lineages and slowing the rate of speciation over geological timescales. Our results help establish molecular stasis as a barrier to speciation and phenotypic innovation and provide a mechanism to explain the low species diversity in living fossil lineages.

摘要

进化停滞的特征是很少形成新物种,并且在很长的地质时间内表现出很少的表型变化的谱系。尽管那些似乎表现出进化停滞的谱系通常被称为活化石,但人们认为没有单一的机制可以解释它们形态进化缓慢和物种多样性低的原因。一些对少数活化石谱系的分子进化率的分析表明,这些分支表现出基因组变化的缓慢速度。在这里,我们使用 481 种脊椎动物的 1105 个外显子数据集来研究进化停滞的机制。我们证明,两种经典上被称为活化石的硬骨鱼类的古老分支,即鲟鱼和雀鳝,在所有有颌脊椎动物中表现出蛋白质编码基因中分子替换率最低。在鲟鱼和雀鳝中,四核苷酸退化位点也观察到类似低的进化速率,这表明一种与选择无关的停滞机制,我们推测这与高效的 DNA 修复装置有关。我们表明,两种在 1 亿多年前最后一次共同祖先的鲟鱼物种在野外产生形态上介于中间且可育的杂种。这使得鲟鱼成为最古老的自然杂交的真核生物,并支持一个理论预测,即基因组中核苷酸替换率的降低减缓了遗传不相容性的积累,使杂交能够跨越深度分化的谱系,并在地质时间尺度上减缓物种形成的速度。我们的研究结果有助于将分子停滞确立为物种形成和表型创新的障碍,并为解释活化石谱系中低物种多样性提供了一种机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验