Suppr超能文献

度量结构人类连接组:本征模式的定位与多重分形性

Metric structural human connectomes: Localization and multifractality of eigenmodes.

作者信息

Bobyleva Anna, Gorsky Alexander, Nechaev Sergei, Valba Olga, Pospelov Nikita

机构信息

Department of Biophysics, Faculty of Biology of the Moscow State University, Moscow, Russia.

Institute for Information Transmission Problems RAS, 127051 Moscow, Russia.

出版信息

Netw Neurosci. 2025 May 8;9(2):682-711. doi: 10.1162/netn_a_00439. eCollection 2025.

Abstract

We explore the fundamental principles underlying the architecture of the human brain's structural connectome through the lens of spectral analysis of Laplacian and adjacency matrices. Building on the idea that the brain balances efficient information processing with minimizing wiring costs, our goal is to understand how the metric properties of the connectome relate to the presence of an inherent scale. We demonstrate that a simple generative model combining nonlinear preferential attachment with an exponential penalty for spatial distance between nodes can effectively reproduce several key features of the human connectome. These include spectral density, edge length distribution, eigenmode localization, local clustering, and topological properties. Additionally, we examine the finer spectral characteristics of human structural connectomes by evaluating the inverse participation ratios (IPR ) across various parts of the spectrum. Our analysis shows that the level statistics in the soft cluster region of the Laplacian spectrum (where eigenvalues are small) deviate from a purely Poisson distribution due to interactions between clusters. Furthermore, we identify localized modes with large IPR values in the continuous spectrum. Multiple fractal eigenmodes are found across different parts of the spectrum, and we evaluate their fractal dimensions. We also find a power-law behavior in the return probability-a hallmark of critical behavior-and conclude by discussing how our findings are related to previous conjectures that the brain operates in an extended critical phase that supports multifractality.

摘要

我们通过拉普拉斯矩阵和邻接矩阵的频谱分析视角,探索人类大脑结构连接组架构背后的基本原理。基于大脑在高效信息处理与最小化布线成本之间取得平衡这一理念,我们的目标是了解连接组的度量属性如何与固有尺度的存在相关联。我们证明,一个将非线性偏好依附与节点间空间距离的指数惩罚相结合的简单生成模型,能够有效地重现人类连接组的几个关键特征。这些特征包括频谱密度、边长度分布、本征模式定位、局部聚类和拓扑属性。此外,我们通过评估频谱各部分的逆参与率(IPR)来研究人类结构连接组更精细的频谱特征。我们的分析表明,由于聚类之间的相互作用,拉普拉斯频谱软聚类区域(特征值较小的区域)的能级统计偏离了纯泊松分布。此外,我们在连续频谱中识别出具有大IPR值的局域模式。在频谱的不同部分发现了多个分形本征模式,并评估了它们的分形维数。我们还在返回概率中发现了幂律行为——临界行为的一个标志——并通过讨论我们的发现如何与先前关于大脑在支持多重分形的扩展临界阶段运行的猜想相关联来得出结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f12d/12140581/8d51b6e2d111/netn-9-2-682-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验