Suppr超能文献

ScLinear 可在单细胞分辨率下预测蛋白质丰度。

ScLinear predicts protein abundance at single-cell resolution.

机构信息

Urology Research Laboratory, Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.

IBM Research Europe, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.

出版信息

Commun Biol. 2024 Mar 4;7(1):267. doi: 10.1038/s42003-024-05958-4.

Abstract

Single-cell multi-omics have transformed biomedical research and present exciting machine learning opportunities. We present scLinear, a linear regression-based approach that predicts single-cell protein abundance based on RNA expression. ScLinear is vastly more efficient than state-of-the-art methodologies, without compromising its accuracy. ScLinear is interpretable and accurately generalizes in unseen single-cell and spatial transcriptomics data. Importantly, we offer a critical view in using complex algorithms ignoring simpler, faster, and more efficient approaches.

摘要

单细胞多组学改变了生物医学研究,并带来了令人兴奋的机器学习机会。我们提出了 scLinear,这是一种基于线性回归的方法,可以根据 RNA 表达预测单细胞蛋白丰度。scLinear 比最先进的方法效率高得多,同时又不牺牲其准确性。scLinear 是可解释的,并能准确地推广到未见的单细胞和空间转录组学数据中。重要的是,我们对使用复杂算法而忽略更简单、更快和更有效的方法持批评态度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e59/10912329/dbb9805b2691/42003_2024_5958_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验