Department of Nephrology, Center People's Hospital of Yichang, The First Clinical Medical College of Three Gorges University, Yichang, 443000, Hubei, China.
Kidney Disease Research Institute of Three Gorges University, Yichang, 443000, Hubei, China.
Cell Mol Biol Lett. 2024 Mar 4;29(1):31. doi: 10.1186/s11658-024-00553-1.
Acute kidney injury (AKI) is a common clinical disorder with complex etiology and poor prognosis, and currently lacks specific and effective treatment options. Mitochondrial dynamics dysfunction is a prominent feature in AKI, and modulation of mitochondrial morphology may serve as a potential therapeutic approach for AKI.
We induced ischemia-reperfusion injury (IRI) in mice (bilateral) and Bama pigs (unilateral) by occluding the renal arteries. ATP depletion and recovery (ATP-DR) was performed on proximal renal tubular cells to simulate in vitro IRI. Renal function was evaluated using creatinine and urea nitrogen levels, while renal structural damage was assessed through histopathological staining. The role of Drp1 was investigated using immunoblotting, immunohistochemistry, immunofluorescence, and immunoprecipitation techniques. Mitochondrial morphology was evaluated using confocal microscopy.
Renal IRI induced significant mitochondrial fragmentation, accompanied by Dynamin-related protein 1 (Drp1) translocation to the mitochondria and Drp1 phosphorylation at Ser616 in the early stages (30 min after reperfusion), when there was no apparent structural damage to the kidney. The use of the Drp1 inhibitor P110 significantly improved kidney function and structural damage. P110 reduced Drp1 mitochondrial translocation, disrupted the interaction between Drp1 and Fis1, without affecting the binding of Drp1 to other mitochondrial receptors such as MFF and Mid51. High-dose administration had no apparent toxic side effects. Furthermore, ATP-DR induced mitochondrial fission in renal tubular cells, accompanied by a decrease in mitochondrial membrane potential and an increase in the translocation of the pro-apoptotic protein Bax. This process facilitated the release of dsDNA, triggering the activation of the cGAS-STING pathway and promoting inflammation. P110 attenuated mitochondrial fission, suppressed Bax mitochondrial translocation, prevented dsDNA release, and reduced the activation of the cGAS-STING pathway. Furthermore, these protective effects of P110 were also observed renal IRI model in the Bama pig and folic acid-induced nephropathy in mice.
Dysfunction of mitochondrial dynamics mediated by Drp1 contributes to renal IRI. The specific inhibitor of Drp1, P110, demonstrated protective effects in both in vivo and in vitro models of AKI.
急性肾损伤(AKI)是一种常见的临床疾病,具有复杂的病因和不良的预后,目前缺乏特异性和有效的治疗方法。线粒体动力学功能障碍是 AKI 的一个显著特征,调节线粒体形态可能成为 AKI 的一种潜在治疗方法。
通过阻断肾动脉,在小鼠(双侧)和巴马猪(单侧)中诱导缺血再灌注损伤(IRI)。用三磷酸腺苷(ATP)耗竭和恢复(ATP-DR)处理近端肾小管细胞,模拟体外 IRI。通过肌酐和尿素氮水平评估肾功能,通过组织病理学染色评估肾结构损伤。使用免疫印迹、免疫组织化学、免疫荧光和免疫沉淀技术研究 Drp1 的作用。使用共聚焦显微镜评估线粒体形态。
肾 IRI 诱导明显的线粒体碎片化,同时伴有动力相关蛋白 1(Drp1)向线粒体易位和 Drp1 在丝氨酸 616 处的磷酸化(再灌注后 30 分钟),此时肾脏没有明显的结构损伤。使用 Drp1 抑制剂 P110 可显著改善肾功能和结构损伤。P110 减少 Drp1 向线粒体的易位,破坏 Drp1 与 Fis1 之间的相互作用,而不影响 Drp1 与其他线粒体受体(如 MFF 和 Mid51)的结合。高剂量给药没有明显的毒副作用。此外,ATP-DR 诱导肾小管细胞中线粒体的分裂,同时伴随着线粒体膜电位的降低和促凋亡蛋白 Bax 的易位增加。这一过程促进了 dsDNA 的释放,触发了 cGAS-STING 通路的激活,促进了炎症。P110 减弱了线粒体分裂,抑制了 Bax 向线粒体的易位,阻止了 dsDNA 的释放,减少了 cGAS-STING 通路的激活。此外,P110 在巴马猪肾 IRI 模型和叶酸诱导的小鼠肾病模型中也观察到了这些保护作用。
Drp1 介导的线粒体动力学功能障碍导致肾 IRI。Drp1 的特异性抑制剂 P110 在 AKI 的体内和体外模型中均显示出保护作用。