Suppr超能文献

基于相位重构的量子随机数生成。

Quantum random number generation based on phase reconstruction.

作者信息

Li Jialiang, Huang Zitao, Yu Chunlin, Wu Jiajie, Zhao Tongge, Zhu Xiangwei, Sun Shihai

出版信息

Opt Express. 2024 Feb 12;32(4):5056-5071. doi: 10.1364/OE.515390.

Abstract

Quantum random number generator (QRNG) utilizes the intrinsic randomness of quantum systems to generate completely unpredictable and genuine random numbers, finding wide applications across many fields. QRNGs relying on the phase noise of a laser have attracted considerable attention due to their straightforward system architecture and high random number generation rates. However, traditional phase noise QRNGs suffer from a 50% loss of quantum entropy during the randomness extraction process. In this paper, we propose a phase-reconstruction quantum random number generation scheme, in which the phase noise of a laser is reconstructed by simultaneously measuring the orthogonal quadratures of the light field using balanced detectors. This enables direct discretization of uniform phase noise, and the min-entropy can achieve a value of 1. Furthermore, our approach exhibits inherent robustness against the classical phase fluctuations of the unbalanced interferometer, eliminating the need for active compensation. Finally, we conducted experimental validation using commercial optical hybrid and balanced detectors, achieving a random number generation rate of 1.96 Gbps at a sampling rate of 200 MSa/s.

摘要

量子随机数发生器(QRNG)利用量子系统的固有随机性来生成完全不可预测的真正随机数,在许多领域有着广泛的应用。基于激光相位噪声的QRNG因其简单的系统架构和高随机数生成速率而备受关注。然而,传统的相位噪声QRNG在随机性提取过程中会损失50%的量子熵。在本文中,我们提出了一种相位重构量子随机数生成方案,其中通过使用平衡探测器同时测量光场的正交分量来重构激光的相位噪声。这使得均匀相位噪声能够直接离散化,并且最小熵可以达到1。此外,我们的方法对不平衡干涉仪的经典相位波动具有内在的鲁棒性,无需主动补偿。最后,我们使用商用光学混合器和平衡探测器进行了实验验证,在200 MSa/s的采样率下实现了1.96 Gbps的随机数生成速率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验