Suppr超能文献

具有丢弃边界箱测量和多区间采样的量子随机数发生器。

Quantum random number generator with discarding-boundary-bin measurement and multi-interval sampling.

作者信息

Lu Zhenguo, Liu Jianqiang, Wang Xuyang, Wang Pu, Li Yongmin, Peng Kunchi

出版信息

Opt Express. 2021 Apr 12;29(8):12440-12453. doi: 10.1364/OE.419756.

Abstract

A quantum random number generator (QRNG) provides a reliable means for the generation of true random numbers. The inherent randomness of the vacuum fluctuations makes the quantum vacuum state a superior source of entropy. However, in practice, the raw sequences of QRNG are inevitably contaminated by classical technical noise, which compromises the security of the QRNG. Min-entropy conditioned on the classical noise is a useful method that can quantify the side-information independent randomness. To improve the extractable randomness from the raw sequences arising from the quantum vacuum-based QRNG, we propose and experimentally demonstrate two approaches, discarding-boundary-bin measurement and multi-interval sampling. The first one increases the conditional min-entropy at a low quantum-to-classical-noise ratio. The latter exploits parallel sampling using multiple analog-to-digital converters (ADCs) and effectively overcomes the finite resolution limit and uniform sampling of a single ADC. The maximum average conditional min-entropy can reach 9.2 per sample when combining these two approaches together in contrast to 6.93 with a single 8-bit ADC.

摘要

量子随机数发生器(QRNG)为生成真随机数提供了一种可靠手段。真空涨落的固有随机性使量子真空态成为熵的优质来源。然而,在实际中,QRNG的原始序列不可避免地会受到经典技术噪声的污染,这会损害QRNG的安全性。基于经典噪声的最小熵是一种可量化与辅助信息无关的随机性的有用方法。为了提高基于量子真空的QRNG原始序列的可提取随机性,我们提出并通过实验证明了两种方法,即丢弃边界箱测量和多区间采样。第一种方法在低量子与经典噪声比的情况下增加了条件最小熵。后者利用多个模数转换器(ADC)进行并行采样,有效克服了单个ADC的有限分辨率限制和均匀采样问题。将这两种方法结合在一起时,每个样本的最大平均条件最小熵可达9.2,而使用单个8位ADC时为6.93。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验