Suppr超能文献

来自放大量子真空的真随机数。

True random numbers from amplified quantum vacuum.

作者信息

Jofre M, Curty M, Steinlechner F, Anzolin G, Torres J P, Mitchell M W, Pruneri V

机构信息

ICFO-Institut de Ciencies Fotoniques, Castelldefels, E-08860 Barcelona, Spain.

出版信息

Opt Express. 2011 Oct 10;19(21):20665-72. doi: 10.1364/OE.19.020665.

Abstract

Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.

摘要

随机数对于从安全通信到数值模拟和定量金融等一系列应用至关重要。算法能够快速产生伪随机结果,即一系列模仿真正随机数大多数特性的数字,而量子随机数发生器(QRNG)则利用内在的量子随机性来产生真正的随机数。单光子QRNG在概念上很简单,但每次检测产生的随机比特数很少。相比之下,真空涨落是QRNG的巨大资源:它们是宽带的,因此每秒可以编码许多随机比特。直接记录真空涨落是可行的,但需要散粒噪声受限的探测器,代价是带宽。我们展示了利用真空的光学放大和干涉测量将真空涨落高效转换为真正随机比特的方法。使用商用光学元件,我们展示了一个比特率为1.11 Gbps的QRNG。通过利用用于光纤通信设备的高速调制源和探测器,所提出的方案有可能扩展到10 Gbps甚至高达100 Gbps。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验