Suppr超能文献

基于高光谱成像技术的绝缘子老化状态研究

Study on the aging status of insulators based on hyperspectral imaging technology.

作者信息

Fan Yihan, Guo Yujun, Liu Yang, Xiao Song, Gao Guoqiang, Zhang Xueqin, Wu Guangning

出版信息

Opt Express. 2024 Feb 12;32(4):5072-5087. doi: 10.1364/OE.506030.

Abstract

The acidic environment is one of the main factors leading to the aging of silicone rubber (SiR) insulators. Aging can reduce the surface hydrophobicity and pollution flashover resistance of insulators, threatening the safe and stable operation of the power grid. Therefore, evaluating the aging state of insulators is essential to prevent flashover accidents on the transmission line. This paper is based on an optical hyperspectral imaging (HSI) technology for pixel-level assessment of insulator aging status. Firstly, the SiR samples were artificially aged in three typical acidic solutions with different concentrations of HNO, HSO, and HCl, and six aging grades of SiR samples were prepared. The HSI of SiR at each aging grade was extracted using a hyperspectral imager. To reduce the calculation complexity and eliminate the interference of useless information in the band, this paper proposes a joint random forest- principal component analysis (RF-PCA) dimensionality reduction method to reduce the original 256-dimensional hyperspectral data to 7 dimensions. Finally, to capture local features in hyperspectral images more effectively and retain the most significant information of the spectral lines, a convolutional neural network (CNN) was used to build a classification model for pixel-level assessment of the SiR's aging state of and visual prediction of insulators' defects. The research method in this paper provides an important guarantee for the timely detection of safety hazards in the power grid.

摘要

酸性环境是导致硅橡胶(SiR)绝缘子老化的主要因素之一。老化会降低绝缘子的表面疏水性和耐污闪性能,威胁电网的安全稳定运行。因此,评估绝缘子的老化状态对于防止输电线路上的闪络事故至关重要。本文基于光学高光谱成像(HSI)技术对绝缘子老化状态进行像素级评估。首先,将SiR样品在三种不同浓度的HNO、HSO和HCl典型酸性溶液中进行人工老化,制备出六个老化等级的SiR样品。使用高光谱成像仪提取每个老化等级的SiR的HSI。为了降低计算复杂度并消除波段中无用信息的干扰,本文提出了一种联合随机森林 - 主成分分析(RF - PCA)降维方法,将原始的256维高光谱数据降至7维。最后,为了更有效地捕捉高光谱图像中的局部特征并保留光谱线的最重要信息,使用卷积神经网络(CNN)建立了一个分类模型,用于对SiR的老化状态进行像素级评估以及对绝缘子缺陷进行可视化预测。本文的研究方法为及时检测电网中的安全隐患提供了重要保障。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验