Suppr超能文献

基于钆塞酸二钠增强磁共振成像、谷草转氨酶与血小板比值及γ-谷氨酰转肽酶与血小板比值的多机器学习融合模型预测孤立性肝细胞癌微血管侵犯:一项多中心研究

Multiple Machine-Learning Fusion Model Based on Gd-EOB-DTPA-Enhanced MRI and Aminotransferase-to-Platelet Ratio and Gamma-Glutamyl Transferase-to-Platelet Ratio to Predict Microvascular Invasion in Solitary Hepatocellular Carcinoma: A Multicenter Study.

作者信息

Wang Fei, Yan Chun Yue, Qin Yuan, Wang Zheng Ming, Liu Dan, He Ying, Yang Ming, Wen Li, Zhang Dong

机构信息

Department of Radiology, XinQiao Hospital of Army Medical University, Chongqing, 400037, People's Republic of China.

Department of Medical Imaging, Luzhou People's Hospital, Luzhou, 646000, People's Republic of China.

出版信息

J Hepatocell Carcinoma. 2024 Feb 29;11:427-442. doi: 10.2147/JHC.S449737. eCollection 2024.

Abstract

BACKGROUND

Currently, it is still confused whether preoperative aminotransferase-to-platelet ratio (APRI) and gamma-glutamyl transferase-to-platelet ratio (GPR) can predict microvascular invasion (MVI) in solitary hepatocellular carcinoma (HCC). We aimed to develop and validate a machine-learning integration model for predicting MVI using APRI, GPR and gadoxetic acid disodium (Gd-EOB-DTPA) enhanced MRI.

METHODS

A total of 314 patients from XinQiao Hospital of Army Medical University were divided chronologically into training set (n = 220) and internal validation set (n = 94), and recurrence-free survival was determined to follow up after surgery. Seventy-three patients from Chongqing University Three Gorges Hospital and Luzhou People's Hospital served as external validation set. Overall, 387 patients with solitary HCC were analyzed as whole dataset set. Least absolute shrinkage and selection operator, tenfold cross-validation and multivariate logistic regression were used to gradually filter features. Six machine-learning models and an ensemble of the all models (ENS) were built. The area under the receiver operating characteristic curve (AUC) and decision curve analysis were used to evaluate model's performance.

RESULTS

APRI, GPR, HBP ([liver SI‒tumor SI]/liver SI), PLT, peritumoral enhancement, non-smooth margin and peritumoral hypointensity were independent risk factors for MVI. Six machine-learning models showed good performance for predicting MVI in training set (AUCs range, 0.793-0.875), internal validation set (0.715-0.832), external validation set (0.636-0.746) and whole dataset set (0.756-0.850). The ENS achieved the highest AUCs (0.879 vs 0.858 vs 0.839 vs 0.851) in four cohorts with excellent calibration and more net benefit. Subgroup analysis indicated that ENS obtained excellent AUCs (0.900 vs 0.809 vs 0.865 vs 0.908) in HCC >5cm, ≤5cm, ≤3cm and ≤2cm cohorts. Kaplan‒Meier survival curves indicated that ENS achieved excellent stratification for MVI status.

CONCLUSION

The APRI and GPR may be new potential biomarkers for predicting MVI of HCC. The ENS achieved optimal performance for predicting MVI in different sizes HCC and may aid in the individualized selection of surgical procedures.

摘要

背景

目前,术前氨基转移酶与血小板比值(APRI)和γ-谷氨酰转移酶与血小板比值(GPR)能否预测孤立性肝细胞癌(HCC)的微血管侵犯(MVI)仍不明确。我们旨在开发并验证一种使用APRI、GPR和钆塞酸二钠(Gd-EOB-DTPA)增强磁共振成像(MRI)预测MVI的机器学习整合模型。

方法

陆军军医大学新桥医院的314例患者按时间顺序分为训练集(n = 220)和内部验证集(n = 94),术后随访确定无复发生存情况。来自重庆大学附属三峡医院和泸州市人民医院的73例患者作为外部验证集。总体而言,将387例孤立性HCC患者作为整个数据集进行分析。采用最小绝对收缩和选择算子、十折交叉验证和多变量逻辑回归逐步筛选特征。构建了六个机器学习模型和所有模型的集成模型(ENS)。采用受试者操作特征曲线(ROC)下面积和决策曲线分析评估模型性能。

结果

APRI、GPR、肝血池分数([肝脏信号强度‒肿瘤信号强度]/肝脏信号强度)、血小板计数(PLT)、瘤周强化、边缘不光滑和瘤周低信号是MVI的独立危险因素。六个机器学习模型在训练集(ROC曲线下面积范围为0.793 - 0.875)、内部验证集(0.715 - 0.832)、外部验证集(0.636 - 0.746)和整个数据集(0.756 - 0.850)中对预测MVI均表现出良好性能。ENS在四个队列中获得了最高的ROC曲线下面积(分别为0.879、0.858、0.839、0.851),具有良好的校准和更大的净效益。亚组分析表明,ENS在HCC>5cm、≤5cm、≤3cm和≤2cm队列中获得了优异的ROC曲线下面积(分别为0.900、0.809、0.865、0.908)。Kaplan-Meier生存曲线表明,ENS对MVI状态实现了出色的分层。

结论

APRI和GPR可能是预测HCC患者MVI的新的潜在生物标志物。ENS在预测不同大小HCC的MVI方面表现出最佳性能,可能有助于手术方式的个体化选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3172/10911084/3a5b7cdb982c/JHC-11-427-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验