Suppr超能文献

基于磁共振成像特征提取人工神经网络的肝细胞癌微血管侵犯术前预测

Preoperative prediction of hepatocellular carcinoma microvascular invasion based on magnetic resonance imaging feature extraction artificial neural network.

作者信息

Xu Jing-Yi, Yang Yu-Fan, Huang Zhong-Yue, Qian Xin-Ye, Meng Fan-Hua

机构信息

Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.

Department of Surgical, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.

出版信息

World J Gastrointest Surg. 2024 Aug 27;16(8):2546-2554. doi: 10.4240/wjgs.v16.i8.2546.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) recurrence is highly correlated with increased mortality. Microvascular invasion (MVI) is indicative of aggressive tumor biology in HCC.

AIM

To construct an artificial neural network (ANN) capable of accurately predicting MVI presence in HCC using magnetic resonance imaging.

METHODS

This study included 255 patients with HCC with tumors < 3 cm. Radiologists annotated the tumors on the T1-weighted plain MR images. Subsequently, a three-layer ANN was constructed using image features as inputs to predict MVI status in patients with HCC. Postoperative pathological examination is considered the gold standard for determining MVI. Receiver operating characteristic analysis was used to evaluate the effectiveness of the algorithm.

RESULTS

Using the bagging strategy to vote for 50 classifier classification results, a prediction model yielded an area under the curve (AUC) of 0.79. Moreover, correlation analysis revealed that alpha-fetoprotein values and tumor volume were not significantly correlated with the occurrence of MVI, whereas tumor sphericity was significantly correlated with MVI ( < 0.01).

CONCLUSION

Analysis of variable correlations regarding MVI in tumors with diameters < 3 cm should prioritize tumor sphericity. The ANN model demonstrated strong predictive MVI for patients with HCC (AUC = 0.79).

摘要

背景

肝细胞癌(HCC)复发与死亡率增加高度相关。微血管侵犯(MVI)表明HCC具有侵袭性肿瘤生物学行为。

目的

构建一个能够使用磁共振成像准确预测HCC中MVI存在情况的人工神经网络(ANN)。

方法

本研究纳入了255例肿瘤<3 cm的HCC患者。放射科医生在T1加权平扫磁共振图像上对肿瘤进行标注。随后,构建了一个以图像特征作为输入的三层ANN,以预测HCC患者的MVI状态。术后病理检查被视为确定MVI的金标准。采用受试者工作特征分析来评估该算法的有效性。

结果

使用装袋策略对50个分类器的分类结果进行投票,一个预测模型的曲线下面积(AUC)为0.79。此外,相关性分析显示,甲胎蛋白值和肿瘤体积与MVI的发生无显著相关性,而肿瘤球形度与MVI显著相关(<0.01)。

结论

对于直径<3 cm的肿瘤,分析与MVI相关的变量时应优先考虑肿瘤球形度。ANN模型对HCC患者的MVI具有较强的预测能力(AUC = 0.79)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b7/11362924/d63498f15d54/WJGS-16-2546-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验