Suppr超能文献

验证用于海鸟行为推断的隐马尔可夫模型

Validating hidden Markov models for seabird behavioural inference.

作者信息

Akeresola Rebecca A, Butler Adam, Jones Esther L, King Ruth, Elvira Víctor, Black Julie, Robertson Gail

机构信息

School of Mathematics and Maxwell Institute for Mathematical Sciences University of Edinburgh Edinburgh UK.

Biomathematics & Statistics Scotland Edinburgh UK.

出版信息

Ecol Evol. 2024 Mar 4;14(3):e11116. doi: 10.1002/ece3.11116. eCollection 2024 Mar.

Abstract

Understanding animal movement and behaviour can aid spatial planning and inform conservation management. However, it is difficult to directly observe behaviours in remote and hostile terrain such as the marine environment. Different underlying states can be identified from telemetry data using hidden Markov models (HMMs). The inferred states are subsequently associated with different behaviours, using ecological knowledge of the species. However, the inferred behaviours are not typically validated due to difficulty obtaining 'ground truth' behavioural information. We investigate the accuracy of inferred behaviours by considering a unique data set provided by Joint Nature Conservation Committee. The data consist of simultaneous proxy movement tracks of the boat (defined as visual tracks as birds are followed by eye) and seabird behaviour obtained by observers on the boat. We demonstrate that visual tracking data is suitable for our study. Accuracy of HMMs ranging from 71% to 87% during chick-rearing and 54% to 70% during incubation was generally insensitive to model choice, even when AIC values varied substantially across different models. Finally, we show that for foraging, a state of primary interest for conservation purposes, identified missed foraging bouts lasted for only a few seconds. We conclude that HMMs fitted to tracking data have the potential to accurately identify important conservation-relevant behaviours, demonstrated by a comparison in which visual tracking data provide a 'gold standard' of manually classified behaviours to validate against. Confidence in using HMMs for behavioural inference should increase as a result of these findings, but future work is needed to assess the generalisability of the results, and we recommend that, wherever feasible, validation data be collected alongside GPS tracking data to validate model performance. This work has important implications for animal conservation, where the size and location of protected areas are often informed by behaviours identified using HMMs fitted to movement data.

摘要

了解动物的运动和行为有助于进行空间规划并为保护管理提供信息。然而,在诸如海洋环境等偏远且恶劣的地形中,直接观察行为是很困难的。使用隐马尔可夫模型(HMMs)可以从遥测数据中识别出不同的潜在状态。随后,利用物种的生态知识,将推断出的状态与不同的行为联系起来。然而,由于难以获得“地面真相”行为信息,推断出的行为通常无法得到验证。我们通过考虑联合自然保护委员会提供的独特数据集来研究推断行为的准确性。这些数据包括船只的同步代理运动轨迹(定义为通过肉眼跟踪鸟类得到的视觉轨迹)以及船上观察者获得的海鸟行为。我们证明视觉跟踪数据适用于我们的研究。即使不同模型的AIC值差异很大,在育雏期间HMMs的准确率在71%至87%之间,孵化期间在54%至70%之间,总体上对模型选择不敏感。最后,我们表明,对于觅食这一保护目的的主要关注状态,识别出的错过的觅食回合仅持续几秒钟。我们得出结论,拟合跟踪数据的HMMs有潜力准确识别与保护相关的重要行为,这通过与视觉跟踪数据提供手动分类行为的“黄金标准”进行比较得以证明。这些发现应会增加对使用HMMs进行行为推断的信心,但需要未来的工作来评估结果的普遍性,并且我们建议,在可行的情况下,应与GPS跟踪数据一起收集验证数据以验证模型性能。这项工作对动物保护具有重要意义,在动物保护中,保护区的大小和位置通常由拟合运动数据的HMMs识别出的行为来确定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb37/10911961/c1653ffcbc84/ECE3-14-e11116-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验