Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India.
Protection of Plant Varieties and Farmers' Rights Authority, New Delhi, India.
Crit Rev Biochem Mol Biol. 2024 Feb-Apr;59(1-2):69-98. doi: 10.1080/10409238.2024.2320659. Epub 2024 Mar 5.
Traditionally, it has been believed that inheritance is driven as phenotypic variations resulting from changes in DNA sequence. However, this paradigm has been challenged and redefined in the contemporary era of epigenetics. The changes in DNA methylation, histone modification, non-coding RNA biogenesis, and chromatin remodeling play crucial roles in genomic functions and regulation of gene expression. More importantly, some of these changes are inherited to the next generations as a part of epigenetic memory and play significant roles in gene expression. The sum total of all changes in DNA bases, histone proteins, and ncRNA biogenesis constitutes the epigenome. Continuous progress in deciphering epigenetic regulations and the existence of heritable epigenetic/epiallelic variations associated with trait of interest enables to deploy epigenome editing tools to modulate gene expression. DNA methylation marks can be utilized in epigenome editing for the manipulation of gene expression. Initially, genome/epigenome editing technologies relied on zinc-finger protein or transcriptional activator-like effector protein. However, the discovery of clustered regulatory interspaced short palindromic repeats CRISPR)/deadCRISPR-associated protein 9 (dCas9) enabled epigenome editing to be more specific/efficient for targeted DNA (de)methylation. One of the major concerns has been the off-target effects, wherein epigenome editing may unintentionally modify gene/regulatory element which may cause unintended change/harmful effects. Moreover, epigenome editing of germline cell raises several ethical/safety issues. This review focuses on the recent developments in epigenome editing tools/techniques, technological limitations, and future perspectives of this emerging technology in therapeutics for human diseases as well as plant improvement to achieve sustainable developmental goals.
传统上,人们认为遗传是由 DNA 序列变化引起的表型变异所驱动的。然而,在当代表观遗传学时代,这种范式受到了挑战和重新定义。DNA 甲基化、组蛋白修饰、非编码 RNA 生物发生和染色质重塑的变化在基因组功能和基因表达调控中起着关键作用。更重要的是,这些变化中的一些作为表观遗传记忆的一部分遗传给下一代,并在基因表达中发挥重要作用。所有 DNA 碱基、组蛋白和 ncRNA 生物发生的变化总和构成了表观基因组。在破译表观遗传调控和存在与感兴趣性状相关的可遗传表观遗传/表观等位基因变异方面的不断进展,使我们能够部署表观基因组编辑工具来调节基因表达。DNA 甲基化标记可用于表观基因组编辑以操纵基因表达。最初,基因组/表观基因组编辑技术依赖于锌指蛋白或转录激活子样效应蛋白。然而,CRISPR/dCas9 的发现使表观基因组编辑能够更特异/高效地针对靶向 DNA(去)甲基化。一个主要关注的问题是脱靶效应,其中表观基因组编辑可能会无意中修饰基因/调节元件,从而导致意外的变化/有害影响。此外,生殖细胞的表观基因组编辑引发了一些伦理/安全问题。本文综述了表观基因组编辑工具/技术的最新进展、技术局限性以及该新兴技术在人类疾病治疗和植物改良以实现可持续发展目标方面的未来前景。