Chen Kai, Lin Zihao, Zhang Guodong, Zheng Jiangxin, Fan Zhongxiong, Xiao Liangping, Xu Qingchi, Xu Jun
Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China.
Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
ChemSusChem. 2024 Jul 22;17(14):e202400339. doi: 10.1002/cssc.202400339. Epub 2024 Mar 28.
The pursuit of efficient host materials to address the sluggish redox kinetics of sulfur species has been a longstanding challenge in advancing the practical application of lithium-sulfur batteries. In this study, amorphous carbon layer loaded with ultrafine CoP nanoparticles prepared by a one-step in situ carbonization/phosphating method to enhance the inhibition of 2D black phosphorus (BP) on LiPSs shuttle. The carbon coating layer facilitates accelerated electron/ion transport, enabling the active involvement of BP in the conversion of soluble lithium polysulfides (LiPSs). Concurrently, the ultra-fine CoP nanoparticles enhance the chemical anchoring ability and introduce additional catalytic sites. As a result, S@BP@C-CoP electrodes demonstrate exemplary cycling stability (with a minimal capacity decay of 0.054 % over 500 cycles at 1 C) and superior rate performance (607.1 mAh g at 5 C). Moreover, at a sulfur loading of 5.5 mg cm, the electrode maintains an impressive reversible areal capacity of 5.45 mAh cm after 50 cycles at 0.1 C. This research establishes a promising approach, leveraging black phosphorus-based materials, for developing high-efficiency Li-S batteries.
在推进锂硫电池实际应用的过程中,寻找能够解决硫物种氧化还原动力学迟缓问题的高效主体材料一直是一项长期挑战。在本研究中,通过一步原位碳化/磷化法制备了负载超细CoP纳米颗粒的非晶碳层,以增强二维黑磷(BP)对锂多硫化物(LiPSs)穿梭效应的抑制作用。碳涂层促进了电子/离子的加速传输,使BP能够积极参与可溶性锂多硫化物(LiPSs)的转化。同时,超细CoP纳米颗粒增强了化学锚定能力并引入了额外的催化位点。结果,S@BP@C-CoP电极表现出优异的循环稳定性(在1 C下500次循环中容量衰减最小,仅为0.054 %)和出色的倍率性能(在5 C下为607.1 mAh g)。此外,在硫负载量为5.5 mg cm时,该电极在0.1 C下循环50次后仍保持令人印象深刻的5.45 mAh cm的可逆面积容量。本研究建立了一种利用基于黑磷的材料开发高效锂硫电池的有前景的方法。