Li Wanlong, Qian Ji, Zhao Teng, Ye Yusheng, Xing Yi, Huang Yongxin, Wei Lei, Zhang Nanxiang, Chen Nan, Li Li, Wu Feng, Chen Renjie
Beijing Key Laboratory of Environmental Science and Engineering School of Material Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China.
Collaborative Innovation Center of Electric Vehicles in Beijing Beijing 100081 P. R. China.
Adv Sci (Weinh). 2019 Jul 15;6(16):1802362. doi: 10.1002/advs.201802362. eCollection 2019 Aug 21.
Rechargeable high-energy lithium-sulfur batteries suffer from rapid capacity decay and poor rate capability due to intrinsically intermediate polysulfides' shuttle effect and sluggish redox kinetics. To tackle these problems simultaneously, a layer-by-layer electrode structure is designed, each layer of which consists of ultrafine CoS-nanoparticle-embedded porous carbon evenly grown on both sides of reduced graphene oxide (rGO). The CoS nanoparticles derived from metal-organic frameworks (MOFs) have an average size of ≈10 nm and can facilitate the conversion between LiS and LiS/LiS in the liquid electrolyte by a catalytic effect, leading to improved polysulfide redox kinetics. In addition, the interconnected conductive frameworks with hierarchical pore structure afford fast ion and electron transport and provide sufficient space to confine polysulfides. As a result, the layer-by-layer electrodes exhibit good rate capabilities with 1180.7 and 700 mAh g at 1.0 and 5.0 C, respectively, and maintain an impressive cycling stability with a low capacity decay of 0.033% per cycle within ultralong 1000 cycles at 5.0 C. Even with a high sulfur loading of 3.0 mg cm, the electrodes still show high rate performance and stable cycling stability over 300 cycles.
可充电高能锂硫电池由于固有的多硫化物穿梭效应和缓慢的氧化还原动力学,存在容量快速衰减和倍率性能差的问题。为了同时解决这些问题,设计了一种逐层电极结构,其每一层都由均匀生长在还原氧化石墨烯(rGO)两侧的嵌入超细CoS纳米颗粒的多孔碳组成。源自金属有机框架(MOF)的CoS纳米颗粒平均尺寸约为10 nm,可通过催化作用促进液体电解质中Li₂S与Li₂S₂/Li₂S₄之间的转化,从而改善多硫化物的氧化还原动力学。此外,具有分级孔结构的互连导电框架提供了快速的离子和电子传输,并为限制多硫化物提供了足够的空间。结果,逐层电极表现出良好的倍率性能,在1.0和5.0 C时分别具有1180.7和700 mAh g⁻¹ 的比容量,并且在5.0 C下超长1000次循环内保持令人印象深刻的循环稳定性,每循环容量衰减低至0.033%。即使硫负载量高达3.0 mg cm⁻²,电极在300次循环中仍表现出高倍率性能和稳定的循环稳定性。