Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
mSystems. 2024 Apr 16;9(4):e0094923. doi: 10.1128/msystems.00949-23. Epub 2024 Mar 5.
The production of dissolved organic matter during phytoplankton blooms and consumption by heterotrophic prokaryotes promote marine carbon biogeochemical cycling. Although prokaryotic viruses presumably affect this process, their dynamics during blooms are not fully understood. Here, we investigated the effects of taxonomic difference in bloom-forming phytoplankton on prokaryotes and their viruses. We analyzed the dynamics of coastal prokaryotic communities and viruses under the addition of dissolved intracellular fractions from taxonomically distinct phytoplankton, the diatom sp. (CIF) and the raphidophycean alga (HIF), using microcosm experiments. Ribosomal RNA gene amplicon and viral metagenomic analyses revealed that particular prokaryotes and prokaryotic viruses specifically increased in either CIF or HIF, indicating that taxonomic difference in bloom-forming phytoplankton promotes distinct dynamics of not only the prokaryotic community but also prokaryotic viruses. Furthermore, combining our microcosm experiments with publicly available environmental data mining, we identified both known and novel possible host-virus pairs. In particular, the growth of prokaryotes associating with phytoplanktonic organic matter, such as Bacteroidetes ( and NS9 marine group), spp., and Rhodobacteriales ( and ), was accompanied by an increase in viruses predicted to infect Bacteroidetes, , and Rhodobacteriales, respectively. Collectively, our findings suggest that changes in bloom-forming species can be followed by an increase in a specific group of prokaryotes and their viruses and that elucidating these tripartite relationships among specific phytoplankton, prokaryotes, and prokaryotic viruses improves our understanding of coastal biogeochemical cycling in blooms.IMPORTANCEThe primary production during marine phytoplankton bloom and the consumption of the produced organic matter by heterotrophic prokaryotes significantly contribute to coastal biogeochemical cycles. While the activities of those heterotrophic prokaryotes are presumably affected by viral infection, the dynamics of their viruses during blooms are not fully understood. In this study, we experimentally demonstrated that intracellular fractions of taxonomically distinct bloom-forming phytoplankton species, the diatom sp. and the raphidophycean alga promoted the growth of taxonomically different prokaryotes and prokaryotic viruses. Based on their dynamics and predicted hosts of those viruses, we succeeded in detecting already-known and novel possible host-virus pairs associating with either phytoplankton species. Altogether, we propose that the succession of bloom-forming phytoplankton would change the composition of the abundant prokaryotes, resulting in an increase in their viruses. These changes in viral composition, depending on bloom-forming species, would alter the dynamics and metabolism of prokaryotes, affecting biogeochemical cycling in blooms.
浮游植物水华期间溶解有机质的产生和异养原核生物的消耗促进了海洋碳生物地球化学循环。尽管原核噬菌体可能会影响这一过程,但它们在水华期间的动态尚未完全了解。在这里,我们研究了形成水华的浮游植物的分类差异对原核生物及其病毒的影响。我们通过微宇宙实验,分析了在添加分类上不同的浮游植物——硅藻 sp.(CIF)和红藻藻——的细胞内溶解成分后沿海原核群落和病毒的动态。核糖体 RNA 基因扩增子和病毒宏基因组分析表明,特定的原核生物和原核噬菌体在 CIF 或 HIF 中特异性增加,这表明形成水华的浮游植物的分类差异不仅促进了原核生物群落,而且还促进了原核噬菌体的独特动态。此外,将我们的微宇宙实验与公开的环境数据挖掘相结合,我们确定了已知和新的可能的宿主-病毒对。特别是,与浮游植物有机物质(如拟杆菌门(和 NS9 海洋群)、、、和红杆菌目(和))相关的原核生物的生长伴随着预测感染拟杆菌门、、和红杆菌目的病毒的增加。总的来说,我们的研究结果表明,水华形成物种的变化可以伴随着特定的原核生物及其病毒的增加,阐明这些特定浮游植物、原核生物和原核噬菌体之间的三方关系可以提高我们对水华期间沿海生物地球化学循环的理解。
海洋浮游植物水华期间的初级生产力和异养原核生物对所产生有机物质的消耗对沿海生物地球化学循环有重大贡献。虽然这些异养原核生物的活动可能受到病毒感染的影响,但它们在水华期间的病毒动态尚未完全了解。在这项研究中,我们通过实验证明了分类上不同的水华形成浮游植物物种——硅藻 sp.和红藻藻——的细胞内成分促进了分类上不同的原核生物和原核噬菌体的生长。根据它们的动态和预测的宿主,我们成功地检测到了与任何一种浮游植物物种相关的已发现和新的可能的宿主-病毒对。总的来说,我们提出,形成水华的浮游植物的演替将改变丰富原核生物的组成,导致其病毒的增加。这些病毒组成的变化,取决于形成水华的物种,将改变原核生物的动态和代谢,从而影响水华期间的生物地球化学循环。