University of Maryland Eastern Shoregrid.266678.b, Princess Anne, Maryland, USA.
USA National Oceanic and Atmospheric Administrationgrid.3532.7, NOS, NCCOS, Marine Spatial Ecology, Oxford, Maryland, USA.
Appl Environ Microbiol. 2022 Jul 26;88(14):e0035622. doi: 10.1128/aem.00356-22. Epub 2022 Jul 6.
spp. and phytoplankton are naturally abundant in marine environments. Recent studies have suggested that the co-occurrence of phytoplankton and the pathogenic bacterium Vibrio parahaemolyticus is due to shared ecological factors, such as nutrient requirements. We compared these communities at two locations in the Delaware Inland Bays, representing a site with high anthropogenic inputs (Torquay Canal) and a less developed area (Sloan Cove). In 2017 to 2018, using light microscopy, we were able to identify the presence of many bloom-forming algal species, such as Karlodinium veneficum, Dinophysis acuminata, Heterosigma akashiwo, and Chattonella subsalsa. Dinoflagellate biomass was higher at Torquay Canal than that at Sloan Cove. and Chloromorum toxicum were found only at Torquay Canal and were not observed in Sloan Cove. Most probable number real-time PCR revealed V. parahaemolyticus and Vibrio vulnificus in environmental samples. The abundance of vibrios and their virulence genes varied between sites, with a significant association between total dissolved nitrogen (TDN), PO, total dissolved phosphorus (TDP), and pathogenic markers. A generalized linear model revealed that principal component 1 of environmental factors (temperature, dissolved oxygen, salinity, TDN, PO, TDP, NO:NO, NO, and NH) was the best at detecting total () V. parahaemolyticus, suggesting that they are the prime drivers for the growth and distribution of pathogenic spp. Vibrio-associated illnesses have been expanding globally over the past several decades (A. Newton, M. Kendall, D. J. Vugia, O. L. Henao, and B. E. Mahon, Clin Infect Dis 54:S391-S395, 2012, https://doi.org/10.1093/cid/cis243). Many studies have linked this expansion with an increase in global temperature (J. Martinez-Urtaza, B. C. John, J. Trinanes, and A. DePaola, Food Res Int 43:10, 2010, https://doi.org/10.1016/j.foodres.2010.04.001; L. Vezzulli, R. R. Colwell, and C. Pruzzo, Microb Ecol 65:817-825, 2013, https://doi.org/10.1007/s00248-012-0163-2; R. N. Paranjpye, W. B. Nilsson, M. Liermann, and E. D. Hilborn, FEMS Microbiol Ecol 91:fiv121, 2015, https://doi.org/10.1093/femsec/fiv121). Temperature and salinity are the two major factors affecting the distribution of spp. (D. Ceccarelli and R. R. Colwell, Front Microbiol 5:256, 2014, https://doi.org/10.3389/fmicb.2014.00256). However, sp. abundance can also be affected by nutrient load and marine plankton blooms (V. J. McKenzie and A. R. Townsend, EcoHealth 4:384-396, 2007; L. Vezzulli, C. Pruzzo, A. Huq, and R. R. Colwell, Environ Microbiol Rep 2:27-33, 2010, https://doi.org/10.1111/j.1758-2229.2009.00128.x; S. Liu, Z. Jiang, Y. Deng, Y. Wu, J. Zhang, et al. Microbiologyopen 7:e00600, 2018, https://doi.org/10.1002/mbo3.600). The expansion of spp. in marine environments calls for a deeper understanding of the biotic and abiotic factors that play a role in their abundance. We observed that pathogenic spp. were most abundant in areas that favor the proliferation of harmful algal bloom (HAB) species. These results can inform managers, researchers, and oyster growers on factors that can influence the growth and distribution of pathogenic spp. in the Delaware Inland Bays.
浮游植物和浮游动物在海洋环境中自然丰富。最近的研究表明,浮游植物和致病性弧菌 Vibrio parahaemolyticus 的共存是由于共同的生态因素,如营养需求。我们比较了特拉华内陆湾的两个地点的这些群落,一个地点的人为输入较高(托奎运河),另一个地点的人为输入较少(斯隆湾)。在 2017 年至 2018 年期间,我们使用光学显微镜能够识别出许多形成藻华的藻类物种,如 Karlodinium veneficum、Dinophysis acuminata、Heterosigma akashiwo 和 Chattonella subsalsa。托奎运河的甲藻生物量高于斯隆湾。Chloromorum toxicum 仅在托奎运河发现,在斯隆湾未观察到。最可能数实时 PCR 显示环境样品中存在副溶血弧菌和创伤弧菌。弧菌及其毒力基因的丰度在地点之间有所不同,总溶解氮 (TDN)、PO、总溶解磷 (TDP) 和致病性标志物之间存在显著关联。广义线性模型显示,环境因素的主成分 1(温度、溶解氧、盐度、TDN、PO、TDP、NO:NO、NO、NH)是检测总()副溶血弧菌的最佳因素,表明它们是致病性 spp. 生长和分布的主要驱动因素。副溶血弧菌相关疾病在过去几十年中在全球范围内不断扩大(A. Newton、M. Kendall、D. J. Vugia、O. L. Henao 和 B. E. Mahon,Clin Infect Dis 54:S391-S395,2012 年,https://doi.org/10.1093/cid/cis243)。许多研究将这种扩张与全球温度的升高联系起来(J. Martinez-Urtaza、B. C. John、J. Trinanes 和 A. DePaola,Food Res Int 43:10,2010 年,https://doi.org/10.1016/j.foodres.2010.04.001;L. Vezzulli、R. R. Colwell 和 C. Pruzzo,Microb Ecol 65:817-825,2013 年,https://doi.org/10.1007/s00248-012-0163-2;R. N. Paranjpye、W. B. Nilsson、M. Liermann 和 E. D. Hilborn,FEMS Microbiol Ecol 91:fiv121,2015 年,https://doi.org/10.1093/femsec/fiv121)。温度和盐度是影响 spp. 分布的两个主要因素(D. Ceccarelli 和 R. R. Colwell,Front Microbiol 5:256,2014 年,https://doi.org/10.3389/fmicb.2014.00256)。然而,浮游动物的丰度也可能受到营养负荷和海洋浮游植物藻华的影响(V. J. McKenzie 和 A. R. Townsend,EcoHealth 4:384-396,2007 年;L. Vezzulli、C. Pruzzo、A. Huq 和 R. R. Colwell,Environ Microbiol Rep 2:27-33,2010 年,https://doi.org/10.1111/j.1758-2229.2009.00128.x;S. Liu、Z. Jiang、Y. Deng、Y. Wu、J. Zhang 等人,Microbiologyopen 7:e00600,2018 年,https://doi.org/10.1002/mbo3.600)。海洋环境中 spp. 的扩张需要更深入地了解在其丰度中起作用的生物和非生物因素。我们观察到致病性 spp. 在有利于有害藻华 (HAB) 物种增殖的地区最为丰富。这些结果可以为管理人员、研究人员和牡蛎养殖者提供有关影响 Delaware Inland Bays 中致病性 spp. 生长和分布的因素的信息。