Suppr超能文献

纤维增强水凝胶复合材料构建的工程化微环境线索促进腱形成和胶原纤维的定向沉积。

Engineered Microenvironmental Cues from Fiber-Reinforced Hydrogel Composites Drive Tenogenesis and Aligned Collagen Deposition.

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.

Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

Adv Healthc Mater. 2024 Jul;13(19):e2400529. doi: 10.1002/adhm.202400529. Epub 2024 Mar 27.

Abstract

Effective tendon regeneration following injury is contingent on appropriate differentiation of recruited cells and deposition of mature, aligned, collagenous extracellular matrix that can withstand the extreme mechanical demands placed on the tissue. As such, myriad biomaterial approaches have been explored to provide biochemical and physical cues that encourage tenogenesis and template aligned matrix deposition in lieu of dysfunctional scar tissue formation. Fiber-reinforced hydrogels present an ideal biomaterial system toward this end given their transdermal injectability, tunable stiffness over a range amenable to tenogenic differentiation of progenitors, and capacity for modular inclusion of biochemical cues. Here, tunable and modular, fiber-reinforced, synthetic hydrogels are employed to elucidate salient microenvironmental determinants of tenogenesis and aligned collagen deposition by tendon progenitor cells. Transforming growth factor β3 drives a cell fate switch toward pro-regenerative or pro-fibrotic phenotypes, which can be biased toward the former by culture in softer microenvironments or inhibition of the RhoA/ROCK activity. Furthermore, studies demonstrate that topographical anisotropy in fiber-reinforced hydrogels critically mediates the alignment of de novo collagen fibrils, reflecting native tendon architecture. These findings inform the design of cell-free, injectable, synthetic hydrogels for tendon tissue regeneration and, likely, that of a range of load-bearing connective tissues.

摘要

有效的肌腱损伤后再生取决于募集细胞的适当分化和成熟、排列整齐的胶原细胞外基质的沉积,这些基质能够承受组织所承受的极端机械需求。因此,人们探索了无数种生物材料方法,以提供生化和物理线索,促进肌腱形成并模板化排列的基质沉积,而不是形成功能失调的瘢痕组织。纤维增强水凝胶是一种理想的生物材料系统,因为它们具有经皮可注射性、在适合祖细胞肌腱发生分化的范围内可调的刚度,以及模块化包含生化线索的能力。在这里,可调且模块化的纤维增强合成水凝胶被用于阐明肌腱祖细胞的肌腱发生和排列胶原沉积的显著微环境决定因素。转化生长因子β3驱动细胞命运向促再生或促纤维化表型的转变,通过在较软的微环境中培养或抑制 RhoA/ROCK 活性,可以偏向于前者。此外,研究表明,纤维增强水凝胶中的各向异性对新形成的胶原原纤维的排列具有重要的调节作用,反映了天然肌腱的结构。这些发现为无细胞、可注射的合成水凝胶在肌腱组织再生中的设计提供了信息,并且可能为一系列承重结缔组织的设计提供了信息。

相似文献

1
Engineered Microenvironmental Cues from Fiber-Reinforced Hydrogel Composites Drive Tenogenesis and Aligned Collagen Deposition.
Adv Healthc Mater. 2024 Jul;13(19):e2400529. doi: 10.1002/adhm.202400529. Epub 2024 Mar 27.
2
3
Cyclic Stretch Bioreactor Enhances Tenogenic Differentiation of MSCs in Biomimicked PCL-tdECM Membranes through Dynamic Mechanical Loading.
ACS Biomater Sci Eng. 2025 Sep 8;11(9):5454-5466. doi: 10.1021/acsbiomaterials.4c02145. Epub 2025 Aug 23.
4
Augmentation of Tendon and Ligament Repair with Fiber-Reinforced Hydrogel Composites.
Adv Healthc Mater. 2024 Nov;13(29):e2400668. doi: 10.1002/adhm.202400668. Epub 2024 Aug 12.
5
Physical and Soluble Cues Enhance Tendon Progenitor Cell Invasion into Injectable Synthetic Hydrogels.
Adv Funct Mater. 2022 Nov 24;32(48):2207556. doi: 10.1002/adfm.202207556. Epub 2022 Sep 28.
6
Regulating inflammation microenvironment and tenogenic differentiation as sequential therapy promotes tendon healing in diabetic rats.
J Orthop Translat. 2025 Jun 5;53:63-81. doi: 10.1016/j.jot.2025.04.015. eCollection 2025 Jul.
8
An all-silk-based functional system promotes tendon regeneration by regulating the cell fate of TSPCs in an inflammatory microenvironment.
Acta Biomater. 2025 Jun 15;200:432-451. doi: 10.1016/j.actbio.2025.05.040. Epub 2025 May 26.
9
Engineered hydrogel biomaterials facilitate lung progenitor cell differentiation from induced pluripotent stem cells.
Am J Physiol Lung Cell Mol Physiol. 2025 Mar 1;328(3):L379-L388. doi: 10.1152/ajplung.00419.2024. Epub 2025 Jan 30.
10
Application of Tendon-Derived Matrix and Carbodiimide Crosslinking Matures the Engineered Tendon-Like Proteome on Meltblown Scaffolds.
J Tissue Eng Regen Med. 2025 Feb 26;2025:2184723. doi: 10.1155/term/2184723. eCollection 2025.

引用本文的文献

1
Design Strategies and Application Potential of Multifunctional Hydrogels for Promoting Angiogenesis.
Int J Nanomedicine. 2024 Nov 27;19:12719-12742. doi: 10.2147/IJN.S495971. eCollection 2024.
2
Augmentation of Tendon and Ligament Repair with Fiber-Reinforced Hydrogel Composites.
Adv Healthc Mater. 2024 Nov;13(29):e2400668. doi: 10.1002/adhm.202400668. Epub 2024 Aug 12.

本文引用的文献

2
Transforming growth factor-β signalling pathway in tendon healing.
Growth Factors. 2022 Aug;40(3-4):98-107. doi: 10.1080/08977194.2022.2082294. Epub 2022 Jun 16.
3
Tenascin-C in fibrosis in multiple organs: Translational implications.
Semin Cell Dev Biol. 2022 Aug;128:130-136. doi: 10.1016/j.semcdb.2022.03.019. Epub 2022 Apr 8.
5
Nonswelling and Hydrolytically Stable Hydrogels Uncover Cellular Mechanosensing in 3D.
Adv Sci (Weinh). 2022 Apr;9(12):e2105325. doi: 10.1002/advs.202105325. Epub 2022 Feb 20.
6
The Role of Rho GTPases During Fibroblast Spreading, Migration, and Myofibroblast Differentiation in 3D Synthetic Fibrous Matrices.
Cell Mol Bioeng. 2021 Sep 2;14(5):381-396. doi: 10.1007/s12195-021-00698-5. eCollection 2021 Oct.
7
Cell contact guidance via sensing anisotropy of network mechanical resistance.
Proc Natl Acad Sci U S A. 2021 Jul 20;118(29). doi: 10.1073/pnas.2024942118.
8
Magnetic Alignment of Electrospun Fiber Segments Within a Hydrogel Composite Guides Cell Spreading and Migration Phenotype Switching.
Front Bioeng Biotechnol. 2021 Jun 16;9:679165. doi: 10.3389/fbioe.2021.679165. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验