Mobile Robotic Systems (Mobots) group, Institute of Electrical and Micro Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, CNRS, Université de Toulouse III - Paul Sabatier, 31062 Toulouse, France.
J R Soc Interface. 2024 Mar;21(212):20230630. doi: 10.1098/rsif.2023.0630. Epub 2024 Mar 6.
Modern computing has enhanced our understanding of how social interactions shape collective behaviour in animal societies. Although analytical models dominate in studying collective behaviour, this study introduces a deep learning model to assess social interactions in the fish species . We compare the results of our deep learning approach with experiments and with the results of a state-of-the-art analytical model. To that end, we propose a systematic methodology to assess the faithfulness of a collective motion model, exploiting a set of stringent individual and collective spatio-temporal observables. We demonstrate that machine learning (ML) models of social interactions can directly compete with their analytical counterparts in reproducing subtle experimental observables. Moreover, this work emphasizes the need for consistent validation across different timescales, and identifies key design aspects that enable our deep learning approach to capture both short- and long-term dynamics. We also show that our approach can be extended to larger groups without any retraining, and to other fish species, while retaining the same architecture of the deep learning network. Finally, we discuss the added value of ML in the context of the study of collective motion in animal groups and its potential as a complementary approach to analytical models.
现代计算技术增强了我们对社会互动如何塑造动物社会集体行为的理解。虽然分析模型在研究集体行为方面占据主导地位,但本研究引入了一种深度学习模型来评估鱼类物种中的社会互动。我们将我们的深度学习方法的结果与实验和最先进的分析模型的结果进行了比较。为此,我们提出了一种系统的方法来评估集体运动模型的忠实度,利用了一组严格的个体和集体时空可观察量。我们证明,社会互动的机器学习 (ML) 模型可以直接与它们的分析模型竞争,以重现微妙的实验可观察量。此外,这项工作强调了在不同时间尺度上进行一致验证的必要性,并确定了关键的设计方面,使我们的深度学习方法能够捕捉短期和长期动态。我们还表明,我们的方法可以扩展到更大的群体而无需任何重新训练,并且可以应用于其他鱼类物种,同时保留深度学习网络的相同架构。最后,我们讨论了机器学习在动物群体集体运动研究中的附加价值及其作为分析模型的补充方法的潜力。