Suppr超能文献

解析并建模具有爆发-滑行游泳方式的鱼类中的相互作用揭示了明显的对齐和吸引行为。

Disentangling and modeling interactions in fish with burst-and-coast swimming reveal distinct alignment and attraction behaviors.

机构信息

Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS) & Université de Toulouse - Paul Sabatier, 31062 Toulouse, France.

Groningen Institute for Evolutionary Life Sciences, University of Groningen, Centre for Life Sciences, Nijenborgh 7, 9747AG Groningen, The Netherlands.

出版信息

PLoS Comput Biol. 2018 Jan 11;14(1):e1005933. doi: 10.1371/journal.pcbi.1005933. eCollection 2018 Jan.

Abstract

The development of tracking methods for automatically quantifying individual behavior and social interactions in animal groups has open up new perspectives for building quantitative and predictive models of collective behavior. In this work, we combine extensive data analyses with a modeling approach to measure, disentangle, and reconstruct the actual functional form of interactions involved in the coordination of swimming in Rummy-nose tetra (Hemigrammus rhodostomus). This species of fish performs burst-and-coast swimming behavior that consists of sudden heading changes combined with brief accelerations followed by quasi-passive, straight decelerations. We quantify the spontaneous stochastic behavior of a fish and the interactions that govern wall avoidance and the reaction to a neighboring fish, the latter by exploiting general symmetry constraints for the interactions. In contrast with previous experimental works, we find that both attraction and alignment behaviors control the reaction of fish to a neighbor. We then exploit these results to build a model of spontaneous burst-and-coast swimming and interactions of fish, with all parameters being estimated or directly measured from experiments. This model quantitatively reproduces the key features of the motion and spatial distributions observed in experiments with a single fish and with two fish. This demonstrates the power of our method that exploits large amounts of data for disentangling and fully characterizing the interactions that govern collective behaviors in animals groups.

摘要

跟踪方法的发展,用于自动量化动物群体中的个体行为和社会互动,为构建集体行为的定量和预测模型开辟了新的视角。在这项工作中,我们结合了广泛的数据分析和建模方法,来测量、分离和重建协调游泳中涉及的实际相互作用的功能形式,这是一种名为拉氏霓虹脂鲤的鱼类。这种鱼表现出爆发-滑行的游泳行为,由突然的转向变化与短暂的加速相结合,随后是准被动的、直线减速。我们量化了鱼的自发随机行为和控制避壁行为以及对相邻鱼的反应的相互作用,后者通过利用相互作用的一般对称约束来实现。与之前的实验工作不同,我们发现吸引和对齐行为都控制着鱼对邻居的反应。然后,我们利用这些结果构建了一个自发爆发-滑行和鱼相互作用的模型,所有参数都是从实验中估计或直接测量得到的。该模型定量地再现了单个鱼和两条鱼实验中观察到的运动和空间分布的关键特征。这证明了我们的方法的有效性,该方法利用大量数据来分离和充分描述控制动物群体中集体行为的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d06/5783427/fac833910755/pcbi.1005933.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验