Schoeller Felix, Christov-Moore Leonardo, Lynch Caitlin, Diot Thomas, Reggente Nicco
Institute for Advanced Consciousness Studies, Santa Monica, CA 90403, USA.
Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
PNAS Nexus. 2024 Mar 5;3(3):pgae066. doi: 10.1093/pnasnexus/pgae066. eCollection 2024 Mar.
Why does the same experience elicit strong emotional responses in some individuals while leaving others largely indifferent? Is the variance influenced by who people are (personality traits), how they feel (emotional state), where they come from (demographics), or a unique combination of these? In this 2,900+ participants study, we disentangle the factors that underlie individual variations in the universal experience of aesthetic chills, the feeling of cold and shivers down the spine during peak experiences. Here, we unravel the interplay of psychological and sociocultural dynamics influencing self-reported chills reactions. A novel technique harnessing mass data mining of social media platforms curates the first large database of ecologically sourced chills-evoking stimuli. A combination of machine learning techniques (LASSO and SVM) and multilevel modeling analysis elucidates the interacting roles of demographics, traits, and states factors in the experience of aesthetic chills. These findings highlight a tractable set of features predicting the occurrence and intensity of chills-age, sex, pre-exposure arousal, predisposition to Kama Muta (KAMF), and absorption (modified tellegen absorption scale [MODTAS]), with 73.5% accuracy in predicting the occurrence of chills and accounting for 48% of the variance in chills intensity. While traditional methods typically suffer from a lack of control over the stimuli and their effects, this approach allows for the assignment of stimuli tailored to individual biopsychosocial profiles, thereby, increasing experimental control and decreasing unexplained variability. Further, they elucidate how hidden sociocultural factors, psychological traits, and contextual states shape seemingly "subjective" phenomena.
为什么相同的经历会在一些人身上引发强烈的情绪反应,而在另一些人身上却基本引不起什么反应呢?这种差异是受人们本身的因素(人格特质)、他们的感受(情绪状态)、他们来自哪里(人口统计学特征),还是这些因素的某种独特组合影响呢?在这项有2900多名参与者的研究中,我们梳理了在审美寒战这一普遍体验(即在巅峰体验中感到寒冷和脊背发凉的感觉)中导致个体差异的因素。在这里,我们揭示了影响自我报告的寒战反应的心理和社会文化动态之间的相互作用。一种利用社交媒体平台海量数据挖掘的新技术创建了第一个基于生态来源的引发寒战刺激的大型数据库。机器学习技术(套索回归和支持向量机)与多层次建模分析相结合,阐明了人口统计学特征、特质和状态因素在审美寒战体验中的相互作用。这些发现突出了一组可处理的特征,这些特征能够预测寒战的发生和强度——年龄、性别、接触前的唤醒水平、对卡玛·穆塔(KAMF)的易感性以及专注度(改良的泰勒根专注度量表[MODTAS]),在预测寒战发生方面的准确率为73.5%,并解释了寒战强度差异的48%。传统方法通常缺乏对刺激及其效果的控制,而这种方法允许根据个体的生物心理社会概况分配量身定制的刺激,从而增强实验控制并减少无法解释的变异性。此外,它们还阐明了隐藏的社会文化因素、心理特质和情境状态如何塑造看似“主观”的现象。