Suppr超能文献

预料之外:通过情绪、推特和苹果手表数据预测惊恐发作

Expecting the Unexpected: Predicting Panic Attacks From Mood, Twitter, and Apple Watch Data.

作者信息

McGinnis Ellen W, Loftness Bryn, Lunna Shania, Berman Isabel, Bagdon Skylar, Lewis Genevieve, Arnold Michael, Danforth Christopher M, Dodds Peter S, Price Matthew, Copeland William E, McGinnis Ryan S

机构信息

M-Sense Research GroupWake Forest School of Medicine Winston-Salem NC 27101 USA.

Vermont Center for Children, Youth and FamiliesUniversity of Vermont Burlington VT 05405 USA.

出版信息

IEEE Open J Eng Med Biol. 2024 Jan 15;5:14-20. doi: 10.1109/OJEMB.2024.3354208. eCollection 2024.

Abstract

OBJECTIVE

Panic attacks are an impairing mental health problem that affects 11% of adults every year. Current criteria describe them as occurring without warning, despite evidence suggesting individuals can often identify attack triggers. We aimed to prospectively explore qualitative and quantitative factors associated with the onset of panic attacks.

RESULTS

Of 87 participants, 95% retrospectively identified a trigger for their panic attacks. Worse individually reported mood and state-level mood, as indicated by Twitter ratings, were related to greater likelihood of panic attack. In a subsample of participants who uploaded their wearable sensor data (n = 32), louder ambient noise and higher resting heart rate were related to greater likelihood of panic attack.

CONCLUSIONS

These promising results suggest that individuals who experience panic attacks may be able to anticipate their next attack which could be used to inform future prevention and intervention efforts.

摘要

目的

惊恐发作是一种损害心理健康的问题,每年影响11%的成年人。当前的标准将其描述为毫无征兆地发生,尽管有证据表明个体通常能够识别发作诱因。我们旨在前瞻性地探索与惊恐发作发作相关的定性和定量因素。

结果

在87名参与者中,95%的人回顾性地识别出了他们惊恐发作的诱因。如推特评分所示,个体报告的较差情绪和状态水平情绪与惊恐发作的可能性增加有关。在上传了可穿戴传感器数据的参与者子样本(n = 32)中,更大的环境噪音和更高的静息心率与惊恐发作的可能性增加有关。

结论

这些有前景的结果表明,经历惊恐发作的个体可能能够预测下一次发作,这可用于为未来的预防和干预措施提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19f4/10914138/af52595b31ad/mcgin1-3354208.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验