Suppr超能文献

个性化癌症医学中用于药物筛选的患者来源3D微型癌症模型研究综述

A Review on Patient-derived 3D Micro Cancer Approach for Drug Screen in Personalized Cancer Medicine.

作者信息

Sekeroglu Zulal Atlı, Sekeroglu Vedat

机构信息

Department of Molecular Biology and Genetics, Faculty of Science and Letters, Ordu University, Ordu, Turkey.

出版信息

Curr Cancer Drug Targets. 2025;25(2):118-130. doi: 10.2174/0115680096285910240206044830.

Abstract

Precision medicine in oncology aims to identify an individualized treatment plan based on genomic alterations in a patient's tumor. It helps to select the most beneficial therapy for an individual patient. As it is now known that no patient's cancer is the same, and therefore, different patients may respond differently to conventional treatments, precision medicine, which replaces the one-size-fits-all approach, supports the development of tailored treatments for specific cancers of different patients. Patient-specific organoid or spheroid models as 3D cell culture models are very promising for predicting resistance to anti-cancer drugs and for identifying the most effective cancer therapy for high-throughput drug screening combined with genomic analysis in personalized medicine. Because tumor spheroids incorporate many features of solid tumors and reflect resistance to drugs and radiation, as in human cancers, they are widely used in drug screening studies. Testing patient-derived 3D cancer spheroids with some anticancer drugs based on information from molecular profiling can reveal the sensitivity of tumor cells to drugs and provide the right compounds to be effective against resistant cells. Given that many patients do not respond to standard treatments, patient-specific treatments will be more effective, less toxic. They will affect survival better compared to the standard approach used for all patients.

摘要

肿瘤学中的精准医学旨在根据患者肿瘤的基因组改变确定个性化的治疗方案。它有助于为个体患者选择最有益的治疗方法。由于现在已知没有两个患者的癌症是相同的,因此不同患者对传统治疗的反应可能不同,取代一刀切方法的精准医学支持为不同患者的特定癌症开发量身定制的治疗方法。作为三维细胞培养模型的患者特异性类器官或球体模型在预测抗癌药物耐药性以及在个性化医学中结合基因组分析进行高通量药物筛选以确定最有效的癌症治疗方法方面非常有前景。因为肿瘤球体包含实体瘤的许多特征,并像在人类癌症中一样反映对药物和辐射的耐药性,所以它们被广泛用于药物筛选研究。根据分子谱分析信息用某些抗癌药物测试患者来源的三维癌症球体可以揭示肿瘤细胞对药物的敏感性,并提供对耐药细胞有效的正确化合物。鉴于许多患者对标准治疗无反应,患者特异性治疗将更有效、毒性更小。与用于所有患者的标准方法相比,它们对生存的影响会更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验