Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA.
Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA.
mBio. 2024 Apr 10;15(4):e0247823. doi: 10.1128/mbio.02478-23. Epub 2024 Mar 6.
The symbioses between leguminous plants and nitrogen-fixing bacteria known as rhizobia are well known for promoting plant growth and sustainably increasing soil nitrogen. Recent evidence indicates that hopanoids, a family of steroid-like lipids, promote symbioses with tropical legumes. To characterize hopanoids in symbiosis with soybean, we validated a recently published cumate-inducible hopanoid mutant of diazoefficiens USDA110, Pcu-::∆. GC-MS analysis showed that this strain does not produce hopanoids without cumate induction, and under this condition, is impaired in growth in rich medium and under osmotic, temperature, and pH stress. , Pcu-::∆ is an inefficient soybean symbiont with significantly lower rates of nitrogen fixation and low survival within the host tissue. RNA-seq revealed that hopanoid loss reduces the expression of flagellar motility and chemotaxis-related genes, further confirmed by swim plate assays, and enhances the expression of genes related to nitrogen metabolism and protein secretion. These results suggest that hopanoids provide a significant fitness advantage to in legume hosts and provide a foundation for future mechanistic studies of hopanoid function in protein secretion and motility. A major problem for global sustainability is feeding our exponentially growing human population while available arable land decreases. Harnessing the power of plant-beneficial microbes is a potential solution, including increasing our reliance on the symbioses of leguminous plants and nitrogen-fixing rhizobia. This study examines the role of hopanoid lipids in the symbiosis between USDA110, an important commercial inoculant strain, and its economically significant host soybean. Our research extends our knowledge of the functions of bacterial lipids in symbiosis to an agricultural context, which may one day help improve the practical applications of plant-beneficial microbes in agriculture.
豆科植物与固氮菌(称为根瘤菌)的共生关系众所周知,它能促进植物生长并可持续增加土壤中的氮含量。最近的证据表明,类甾醇样脂类化合物藿烷类化合物促进了热带豆科植物的共生关系。为了研究大豆与霍烷类化合物的共生关系,我们验证了最近发表的根瘤菌 USDA110 的 cumate 诱导型霍烷类化合物突变体 Pcu-::∆。GC-MS 分析表明,在没有 cumate 诱导的情况下,该菌株不产生藿烷类化合物,在这种情况下,其在丰富培养基中的生长以及在渗透压、温度和 pH 应激下受到损害。结果表明,Pcu-::∆ 是一种低效的大豆共生体,固氮率显著降低,在宿主组织内的存活率低。RNA-seq 显示,藿烷类化合物的缺失减少了鞭毛运动和趋化性相关基因的表达,通过泳动平板测定进一步证实了这一点,并且增强了与氮代谢和蛋白质分泌相关的基因的表达。这些结果表明,藿烷类化合物为根瘤菌在豆科宿主中提供了显著的适应性优势,并为未来研究藿烷类化合物在蛋白质分泌和运动中的功能提供了基础。全球可持续性面临的一个主要问题是在可耕地减少的情况下养活我们呈指数增长的人口。利用植物有益微生物是一种潜在的解决方案,包括增加我们对豆科植物和固氮根瘤菌共生关系的依赖。本研究探讨了藿烷类脂在重要商业接种菌株根瘤菌 USDA110 与其经济上重要的宿主大豆之间共生关系中的作用。我们的研究将细菌脂类在共生关系中的功能的知识扩展到农业背景下,这可能有一天有助于提高农业中有益微生物在农业中的实际应用。