Nicoud Quentin, Lamouche Florian, Chaumeret Anaïs, Balliau Thierry, Le Bars Romain, Bourge Mickaël, Pierre Fabienne, Guérard Florence, Sallet Erika, Tuffigo Solenn, Pierre Olivier, Dessaux Yves, Gilard Françoise, Gakière Bertrand, Nagy Istvan, Kereszt Attila, Zivy Michel, Mergaert Peter, Gourion Benjamin, Alunni Benoit
Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
PAPPSO, GQE-Le Moulon, INRAE, CNRS, AgroParisTech, Paris-Saclay University, Gif-sur-Yvette, France.
mSystems. 2021 May 11;6(3):e01237-20. doi: 10.1128/mSystems.01237-20.
Legume plants can form root organs called nodules where they house intracellular symbiotic rhizobium bacteria. Within nodule cells, rhizobia differentiate into bacteroids, which fix nitrogen for the benefit of the plant. Depending on the combination of host plants and rhizobial strains, the output of rhizobium-legume interactions varies from nonfixing associations to symbioses that are highly beneficial for the plant. USDA110 was isolated as a soybean symbiont, but it can also establish a functional symbiotic interaction with In contrast to soybean, triggers terminal bacteroid differentiation, a process involving bacterial cell elongation, polyploidy, and increased membrane permeability, leading to a loss of bacterial viability while plants increase their symbiotic benefit. A combination of plant metabolomics, bacterial proteomics, and transcriptomics along with cytological analyses were used to study the physiology of USDA110 bacteroids in these two host plants. We show that USDA110 establishes a poorly efficient symbiosis with despite the full activation of the bacterial symbiotic program. We found molecular signatures of high levels of stress in bacteroids, whereas those of terminal bacteroid differentiation were only partially activated. Finally, we show that in , USDA110 bacteroids undergo atypical terminal differentiation hallmarked by the disconnection of the canonical features of this process. This study pinpoints how a rhizobium strain can adapt its physiology to a new host and cope with terminal differentiation when it did not coevolve with such a host. Legume-rhizobium symbiosis is a major ecological process in the nitrogen cycle, responsible for the main input of fixed nitrogen into the biosphere. The efficiency of this symbiosis relies on the coevolution of the partners. Some, but not all, legume plants optimize their return on investment in the symbiosis by imposing on their microsymbionts a terminal differentiation program that increases their symbiotic efficiency but imposes a high level of stress and drastically reduces their viability. We combined multi-omics with physiological analyses to show that the symbiotic couple formed by USDA110 and , in which the host and symbiont did not evolve together, is functional but displays a low symbiotic efficiency associated with a disconnection of terminal bacteroid differentiation features.
豆科植物能够形成名为根瘤的根器官,根瘤中容纳着细胞内共生的根瘤菌。在根瘤细胞内,根瘤菌分化为类菌体,类菌体为植物固定氮。根据宿主植物和根瘤菌菌株的组合不同,根瘤菌与豆科植物相互作用的结果从非固氮关联到对植物非常有益的共生关系不等。USDA110最初是作为大豆共生体分离出来的,但它也能与[此处原文缺失相关内容]建立功能性共生相互作用。与大豆不同,[此处原文缺失相关内容]触发类菌体终末分化,这一过程涉及细菌细胞伸长、多倍体化以及膜通透性增加,导致细菌活力丧失,而植物的共生效益增加。结合植物代谢组学、细菌蛋白质组学和转录组学以及细胞学分析来研究USDA110类菌体在这两种宿主植物中的生理学特性。我们发现,尽管细菌共生程序被完全激活,但USDA110与[此处原文缺失相关内容]建立的共生关系效率低下。我们在[此处原文缺失相关内容]类菌体中发现了高水平应激的分子特征,而类菌体终末分化的特征仅被部分激活。最后,我们表明,在[此处原文缺失相关内容]中,USDA110类菌体经历了非典型的终末分化,其特征是该过程的典型特征脱节。这项研究指出了一种根瘤菌菌株在未与宿主共同进化时如何使其生理学特性适应新宿主并应对终末分化。豆科植物与根瘤菌的共生是氮循环中的一个主要生态过程,负责将固定氮主要输入生物圈。这种共生关系的效率依赖于共生伙伴的共同进化。一些(但不是全部)豆科植物通过对其微共生体施加终末分化程序来优化它们在共生关系中的投资回报。该程序提高了它们的共生效率,但施加了高水平的应激并大幅降低了它们的活力。我们将多组学与生理学分析相结合,表明由USDA110和[此处原文缺失相关内容]形成的共生组合(其中宿主和共生体并非共同进化)是有功能的,但共生效率较低,且与类菌体终末分化特征的脱节有关。