Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
Nanoscale. 2024 Mar 21;16(12):6199-6214. doi: 10.1039/d3nr06305d.
While the filtering and accumulation effects of the extracellular matrix (ECM) on nanoparticles (NPs) have been experimentally observed, the detailed interactions between NPs and specific biomolecules within the ECM remain poorly understood and pose challenges for molecular-level investigations. Herein, we adopt molecular dynamics simulations to elucidate the impacts of methyl-, hydroxy-, amine-, and carboxyl-modified gold NPs on the cell-binding domains of fibronectin (Fn), an indispensable component of the ECM for cell attachment and signaling. Simulation results show that NPs can specifically bind to distinct Fn domains, and the strength of these interactions depends on the physicochemical properties of NPs. NP-NH exhibits the highest affinity to domains rich in acidic residues, leading to strong electrostatic interactions that induce severe deformation, potentially disrupting the normal functioning of Fn. NP-CH and NP-COO selectively occupy the RGD/PHSRN motifs, which may hinder their recognition by integrins on the cell surface. Additionally, NPs can disrupt the dimerization of Fn through competing for residues at the dimer interface or by diminishing the shape complementarity between dimerized proteins. The mechanical stretching of Fn, crucial for ECM fibrillogenesis, is suppressed by NPs due to their local rigidifying effect. These results provide valuable molecular-level insights into the impacts of various NPs on the ECM, holding significant implications for advancing nanomedicine and nanosafety evaluation.
虽然已经实验观察到细胞外基质 (ECM) 对纳米颗粒 (NPs) 的过滤和积累作用,但 NPs 与 ECM 中特定生物分子之间的详细相互作用仍知之甚少,这给分子水平的研究带来了挑战。在此,我们采用分子动力学模拟阐明了甲基化、羟基化、胺基化和羧基化修饰的金 NPs 对细胞附着和信号传导 ECM 中不可或缺的组成部分纤维连接蛋白 (Fn) 的细胞结合结构域的影响。模拟结果表明,NPs 可以特异性地结合到不同的 Fn 结构域,这些相互作用的强度取决于 NPs 的物理化学性质。NP-NH 与富含酸性残基的结构域具有最高的亲和力,导致强烈的静电相互作用,引起严重的变形,可能破坏 Fn 的正常功能。NP-CH 和 NP-COO 选择性地占据 RGD/PHSRN 基序,这可能会阻碍它们被细胞表面上的整合素识别。此外, NPs 可以通过竞争二聚体界面上的残基或减少二聚化蛋白之间的形状互补性来破坏 Fn 的二聚化。由于 NPs 的局部刚性效应,对 ECM 纤维发生至关重要的 Fn 机械拉伸受到抑制。这些结果为各种 NPs 对 ECM 的影响提供了有价值的分子水平见解,对推进纳米医学和纳米安全评估具有重要意义。
Postepy Hig Med Dosw (Online). 2007-11-5
J Cell Sci. 2003-8-15
Curr Opin Cell Biol. 2008-10
Histol Histopathol. 1997-1
Acta Biomater. 2018-7-10
Biomaterials. 2010-12-24