Kong Xiuzhen, Xiong Yali, Song Xiaoyun, Wadey Samuel, Yu Suhang, Rao Jinliang, Lale Aneesh, Lombardi Marco, Fusi Riccardo, Bhosale Rahul, Huang Guoqiang
Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
Plant Physiol. 2024 Jun 28;195(3):1969-1980. doi: 10.1093/plphys/kiae134.
Root angle is a critical factor in optimizing the acquisition of essential resources from different soil depths. The regulation of root angle relies on the auxin-mediated root gravitropism machinery. While the influence of ethylene on auxin levels is known, its specific role in governing root gravitropism and angle remains uncertain, particularly when Arabidopsis (Arabidopsis thaliana) core ethylene signaling mutants show no gravitropic defects. Our research, focusing on rice (Oryza sativa L.) and maize (Zea mays), clearly reveals the involvement of ethylene in root angle regulation in cereal crops through the modulation of auxin biosynthesis and the root gravitropism machinery. We elucidated the molecular components by which ethylene exerts its regulatory effect on auxin biosynthesis to control root gravitropism machinery. The ethylene-insensitive mutants ethylene insensitive2 (osein2) and ethylene insensitive like1 (oseil1), exhibited substantially shallower crown root angle compared to the wild type. Gravitropism assays revealed reduced root gravitropic response in these mutants. Hormone profiling analysis confirmed decreased auxin levels in the root tips of the osein2 mutant, and exogenous auxin (NAA) application rescued root gravitropism in both ethylene-insensitive mutants. Additionally, the auxin biosynthetic mutant mao hu zi10 (mhz10)/tryptophan aminotransferase2 (ostar2) showed impaired gravitropic response and shallow crown root angle phenotypes. Similarly, maize ethylene-insensitive mutants (zmein2) exhibited defective gravitropism and root angle phenotypes. In conclusion, our study highlights that ethylene controls the auxin-dependent root gravitropism machinery to regulate root angle in rice and maize, revealing a functional divergence in ethylene signaling between Arabidopsis and cereal crops. These findings contribute to a better understanding of root angle regulation and have implications for improving resource acquisition in agricultural systems.
根角度是优化从不同土壤深度获取必需资源的关键因素。根角度的调节依赖于生长素介导的根向重力性机制。虽然乙烯对生长素水平的影响是已知的,但其在控制根向重力性和角度方面的具体作用仍不确定,特别是当拟南芥核心乙烯信号突变体没有向重力性缺陷时。我们以水稻(Oryza sativa L.)和玉米(Zea mays)为研究对象,清楚地揭示了乙烯通过调节生长素生物合成和根向重力性机制参与谷类作物根角度的调节。我们阐明了乙烯对生长素生物合成发挥调节作用以控制根向重力性机制的分子成分。乙烯不敏感突变体乙烯不敏感2(osein2)和类乙烯不敏感1(oseil1)与野生型相比,冠根角度明显更浅。向重力性测定显示这些突变体的根向重力性反应降低。激素谱分析证实osein2突变体根尖中的生长素水平降低,外源生长素(萘乙酸)处理挽救了两个乙烯不敏感突变体的根向重力性。此外,生长素生物合成突变体毛胡子10(mhz10)/色氨酸转氨酶2(ostar2)表现出向重力性反应受损和冠根角度浅的表型。同样,玉米乙烯不敏感突变体(zmein2)表现出向重力性缺陷和根角度表型。总之,我们的研究强调乙烯控制依赖生长素的根向重力性机制来调节水稻和玉米的根角度,揭示了拟南芥和谷类作物之间乙烯信号传导的功能差异。这些发现有助于更好地理解根角度调节,并对改善农业系统中的资源获取具有重要意义。