Broad Zoe, Lefevre James, Wilkinson Melanie J, Barton Samuel, Barbier Francois, Jung Hyungtaek, Donovan Diane, Ortiz-Barrientos Daniel
School of the Environment, The University of Queensland, St Lucia, Queensland, Australia.
Australian Research Centre of Excellence in Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia.
Mol Ecol. 2025 Aug;34(15):e17543. doi: 10.1111/mec.17543. Epub 2024 Oct 23.
Plants adapt to their local environment through complex interactions between genes, gene networks and hormones. Although the impact of gene expression on trait regulation and evolution has been recognised for many decades, its role in the evolution of adaptation is still a subject of intense exploration. We used a Multi-parent Advanced Generation Inter-Cross (MAGIC) population, which we derived from crossing multiple parents from two distinct coastal ecotypes of an Australia wildflower, Senecio lautus. We focused on studying the contrasting gravitropic behaviours of these ecotypes, which have evolved independently multiple times and show strong responses to natural selection in field experiments, emphasising the role of natural selection in their evolution. Here, we investigated how gene expression differences have contributed to the adaptive evolution of gravitropism. We studied gene expression in 60 pools at five time points (30, 60, 120, 240 and 480 min) after rotating half of the pools 90°. We found 428 genes with differential expression in response to the 90° rotation treatment. Of these, 81 genes (~19%) have predicted functions related to the plant hormones auxin and ethylene, which are crucial for the gravitropic response. By combining insights from Arabidopsis mutant studies and analysing our gene networks, we propose a preliminary model to explain the differences in gravitropism between ecotypes. This model suggests that the differences arise from changes in the transport and availability of the two hormones auxin and ethylene. Our findings indicate that the genetic basis of adaptation involves interconnected signalling pathways that work together to give rise to new ecotypes.
植物通过基因、基因网络和激素之间的复杂相互作用来适应其当地环境。尽管基因表达对性状调控和进化的影响在几十年前就已被认识到,但其在适应性进化中的作用仍是一个深入探索的课题。我们使用了一个多亲本高级世代杂交(MAGIC)群体,该群体由澳大利亚野花银胶菊(Senecio lautus)两个不同沿海生态型的多个亲本杂交而来。我们专注于研究这些生态型截然不同的向重力性反应,它们已经独立进化了多次,并且在田间实验中对自然选择表现出强烈反应,这突出了自然选择在其进化中的作用。在这里,我们研究了基因表达差异如何促进向重力性的适应性进化。我们在将一半样本池旋转90°后的五个时间点(30、60、120、240和480分钟)对60个样本池的基因表达进行了研究。我们发现有428个基因在90°旋转处理后表达存在差异。其中,81个基因(约19%)具有与植物激素生长素和乙烯相关的预测功能,而这两种激素对向重力性反应至关重要。通过结合拟南芥突变体研究的见解并分析我们的基因网络,我们提出了一个初步模型来解释生态型之间向重力性的差异。该模型表明,这些差异源于生长素和乙烯这两种激素的运输和可利用性的变化。我们的研究结果表明,适应的遗传基础涉及相互关联的信号通路,这些信号通路共同作用产生新的生态型。