Lätsch Lukas, Guda Sergey A, Romankov Vladyslav, Wartmann Christina, Neudörfl Jörg-M, Dreiser Jan, Berkessel Albrecht, Guda Alexander A, Copéret Christophe
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog Weg 2, CH 8093Zurich, Switzerland.
The Smart Materials Research Institute, Southern Federal University, Sladkova 178324, 344090Rostov-on-Don, Russia.
J Am Chem Soc. 2024 Mar 20;146(11):7456-7466. doi: 10.1021/jacs.3c12831. Epub 2024 Mar 6.
Ti-based molecules and materials are ubiquitous and play a major role in both homogeneous and heterogeneous catalytic processes. Understanding the electronic structures of their active sites (oxidation state, local symmetry, and ligand environment) is key to developing molecular-level structure-property relationships. In that context, X-ray absorption spectroscopy (XAS) offers a unique combination of elemental selectivity and sensitivity to local symmetry. Commonly, for early transition metals such as Ti, K-edge XAS is applied for in situ characterization and subsequent structural analysis with high sensitivity toward tetrahedral species. Ti L-edge spectroscopy is in principle complementary and offers specific opportunities to interrogate the electronic structure of five-and six-coordinated species. It is, however, much more rarely implemented because the use of soft X-rays implies ultrahigh vacuum conditions. Furthermore, the interpretation of the data can be challenging. Here, we show how Ti L-edge spectroscopy can help to obtain unique information about both homogeneous and heterogeneous epoxidation catalysts and develop a molecular-level relationship between spectroscopic signatures and electronic structures. Toward this goal, we first establish a spectral library of molecular Ti reference compounds, comprising various coordination environments with mono- and dimeric Ti species having O, N, and Cl ligands. We next implemented a computational methodology based on multiplet ligand field theory and maximally localized Wannier orbitals benchmarked on our library to understand Ti L-edge spectroscopic signatures. We finally used this approach to track and predict the spectra of catalytically relevant intermediates, focusing on Ti-based olefin epoxidation catalysts.
钛基分子和材料无处不在,在均相和多相催化过程中都起着重要作用。了解其活性位点的电子结构(氧化态、局部对称性和配体环境)是建立分子水平结构-性质关系的关键。在这种情况下,X射线吸收光谱(XAS)提供了元素选择性和对局部对称性敏感性的独特组合。通常,对于钛等早期过渡金属,K边XAS用于原位表征以及随后对四面体物种具有高灵敏度的结构分析。钛L边光谱原则上是互补的,为研究五配位和六配位物种的电子结构提供了特定机会。然而,由于使用软X射线意味着超高真空条件,其实施频率要低得多。此外,数据的解释可能具有挑战性。在这里,我们展示了钛L边光谱如何有助于获得关于均相和多相环氧化催化剂的独特信息,并建立光谱特征与电子结构之间的分子水平关系。为了实现这一目标,我们首先建立了分子钛参考化合物的光谱库,包括具有O、N和Cl配体的单聚和二聚钛物种的各种配位环境。接下来,我们基于多重配体场理论和在我们的库上进行基准测试的最大局域化万尼尔轨道实施了一种计算方法,以理解钛L边光谱特征。最后,我们使用这种方法来跟踪和预测催化相关中间体的光谱,重点是钛基烯烃环氧化催化剂。