Mathe Zachary, Maganas Dimitrios, Neese Frank, DeBeer Serena
Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
Nat Rev Chem. 2025 May 30. doi: 10.1038/s41570-025-00718-2.
X-ray spectroscopy plays a pivotal role in understanding the geometric and electronic structures of countless molecules and materials, from homogeneous and heterogeneous catalysts to biological active sites. The element-selectivity of X-ray spectroscopy allows for phenomena at specific photoabsorbers to be investigated. Since the early 2000s, experimental sophistication has progressed, with increasing applications of X-ray emission spectroscopy and two-dimensional photon-in-photon-out spectroscopies, such as resonant inelastic X-ray scattering. Although advanced X-ray spectroscopic methods increase selectivity and information content, the spectra obtained present major challenges for both qualitative and quantitative interpretation. To maximize the insight gained from X-ray spectroscopy, close coupling of experiment and theory is essential. Herein, we present the theoretical and experimental aspects of X-ray spectroscopy, with an emphasis on molecular systems and how an integrated approach with a solid foundation in molecular electronic structure theory enables new modes of inquiry into (bio)chemical catalysis.
X射线光谱学在理解无数分子和材料的几何结构与电子结构方面发挥着关键作用,这些分子和材料涵盖了从均相和多相催化剂到生物活性位点等多种类型。X射线光谱学的元素选择性使得特定光吸收体处的现象得以研究。自21世纪初以来,实验技术不断进步,X射线发射光谱学以及二维光子进-光子出光谱学(如共振非弹性X射线散射)的应用日益增多。尽管先进的X射线光谱方法提高了选择性和信息含量,但所获得的光谱在定性和定量解释方面都面临重大挑战。为了最大限度地从X射线光谱学中获取深入见解,实验与理论的紧密结合至关重要。在此,我们阐述X射线光谱学的理论和实验方面,重点关注分子体系,以及基于分子电子结构理论坚实基础的综合方法如何开启对(生物)化学催化新的探究模式。