Suppr超能文献

理解花瓣效应:天然玫瑰花瓣及其衍生表面的润湿性和表面结构。

Understanding the petal effect: Wetting properties and surface structure of natural rose petals and rose petal-derived surfaces.

机构信息

Laboratory of Surface and Interface Physics, Department of Applied Physics, University of Granada, Campus de Fuentenueva, Granada ES-18071, Spain.

Centro de Instrumentación Científica, Universidad de Granada, Granada, Spain.

出版信息

Colloids Surf B Biointerfaces. 2024 Apr;236:113832. doi: 10.1016/j.colsurfb.2024.113832. Epub 2024 Mar 4.

Abstract

The petal effect is identified as a non-wetting state with high drop adhesion. The wetting behavior of petal surfaces is attributed to the papillose structure of their epidermis, which leads to a Cassie-Baxter regime combined with strong pinning sites. Under this scenario, sessile drops are pearl shaped and, unlike lotus-like surfaces, firmly attached to the surface. Petal surfaces are used as inspiration for the fabrication of functional parahydrophobic surfaces such as antibacterial or water-harvesting surfaces. In this work, two types of rose petals were replicated by using a templating technique based in Polydimethylsiloxane (PDMS) nanocasting. The topographic structure, the condensation mechanism under saturated environments and the wetting properties of the natural rose petal and their negative and positive replicas were analyzed. Finally, we performed prospective ice adhesion studies to elucidate whether petal-like surfaces may be used as deicing solutions.

摘要

花瓣效应被确定为一种具有高附着性的非润湿状态。花瓣表面的润湿行为归因于其表皮的乳头状结构,这导致了Cassie-Baxter 状态与强钉扎点的结合。在这种情况下,固定的液滴呈珍珠状,与类似莲花的表面不同,它们牢牢地附着在表面上。花瓣表面被用作制造功能性超疏水表面的灵感来源,例如抗菌或集水表面。在这项工作中,使用基于聚二甲基硅氧烷 (PDMS) 纳米铸造的模板技术复制了两种类型的玫瑰花瓣。分析了天然玫瑰花瓣及其负、正复制品的形貌结构、在饱和环境下的冷凝机制以及润湿性。最后,我们进行了有前景的冰附着研究,以阐明花瓣状表面是否可用作除冰溶液。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验