Suppr超能文献

2019-2021 年期间缅甸仰光市环境空气污染物(PM、PM 和 O)的首次时间分布模型。

First temporal distribution model of ambient air pollutants (PM, PM, and O) in Yangon City, Myanmar during 2019-2021.

机构信息

International Program of Hazardous Substances and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.

College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.

出版信息

Environ Pollut. 2024 Apr 15;347:123718. doi: 10.1016/j.envpol.2024.123718. Epub 2024 Mar 4.

Abstract

Air pollution has emerged as a significant global concern, particularly in urban centers. This study aims to investigate the temporal distribution of air pollutants, including PM, PM, and O, utilizing multiple linear regression modeling. Additionally, the research incorporates the calculation of the Air Quality Index (AQI) and Autoregressive Integrated Moving Average (ARIMA) time series modeling to predict the AQI for PM and PM. The concentrations and AQI values for PM ranged from 0 to 93.6 μg/m and 0 to 171, respectively, surpassing the Word Health Organization's (WHO) acceptable threshold levels. Similarly, concentrations and AQI values for PM ranged from 0.1 to 149.27 μg/m and 2-98 μg/m, respectively, also exceeding WHO standards. Particulate matter pollution exhibited notable peaks during summer and winter. Key meteorological factors, including dew point temperature, relative humidity, and rainfall, showed a significant negative association with all pollutants, while ambient temperature exhibited a significant positive correlation with particulate matter. Multiple linear regression models of particulate matter for winter season demonstrated the highest model performance, explaining most of the variation in particulate matter concentrations. The annual multiple linear regression model for PM exhibited the most robust performance, explaining 60% of the variation, while the models for PM and O explained 45% of the variation in their concentrations. Time series modeling projected an increasing trend in the AQI for particulate matter in 2022. The precise and accurate results of this study serve as a valuable reference for developing effective air pollution control strategies and raising awareness of AQI in Myanmar.

摘要

空气污染已成为一个重大的全球问题,尤其是在城市中心。本研究旨在利用多元线性回归模型研究空气污染物(包括 PM、PM 和 O)的时间分布。此外,研究还包括计算空气质量指数(AQI)和自回归积分移动平均(ARIMA)时间序列模型,以预测 PM 和 PM 的 AQI。PM 的浓度和 AQI 值范围为 0 至 93.6μg/m 和 0 至 171,超过世界卫生组织(WHO)可接受的阈值水平。同样,PM 的浓度和 AQI 值范围为 0.1 至 149.27μg/m 和 2-98μg/m,也超过了 WHO 标准。颗粒物污染在夏季和冬季表现出明显的高峰。关键气象因素,包括露点温度、相对湿度和降雨量,与所有污染物呈显著负相关,而环境温度与颗粒物呈显著正相关。冬季颗粒物的多元线性回归模型表现出最高的模型性能,解释了颗粒物浓度变化的大部分原因。PM 的年度多元线性回归模型表现出最稳健的性能,解释了 60%的浓度变化,而 PM 和 O 的模型解释了它们浓度变化的 45%。时间序列模型预测 2022 年颗粒物 AQI 将呈上升趋势。本研究的精确和准确结果为制定有效的空气污染控制策略和提高缅甸对 AQI 的认识提供了有价值的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验