Department of Computer Science, University of California, Irvine, USA.
Department of Cognitive Sciences, University of California, Irvine, USA.
Neuroimage. 2024 May 1;291:120559. doi: 10.1016/j.neuroimage.2024.120559. Epub 2024 Mar 4.
As the field of computational cognitive neuroscience continues to expand and generate new theories, there is a growing need for more advanced methods to test the hypothesis of brain-behavior relationships. Recent progress in Bayesian cognitive modeling has enabled the combination of neural and behavioral models into a single unifying framework. However, these approaches require manual feature extraction, and lack the capability to discover previously unknown neural features in more complex data. Consequently, this would hinder the expressiveness of the models. To address these challenges, we propose a Neurocognitive Variational Autoencoder (NCVA) to conjoin high-dimensional EEG with a cognitive model in both generative and predictive modeling analyses. Importantly, our NCVA enables both the prediction of EEG signals given behavioral data and the estimation of cognitive model parameters from EEG signals. This novel approach can allow for a more comprehensive understanding of the triplet relationship between behavior, brain activity, and cognitive processes.
随着计算认知神经科学领域的不断扩展和新理论的产生,对于更先进的方法来测试脑-行为关系假设的需求也在不断增加。贝叶斯认知建模的最新进展使得将神经和行为模型结合到一个统一的框架中成为可能。然而,这些方法需要手动提取特征,并且缺乏在更复杂的数据中发现以前未知的神经特征的能力。因此,这将限制模型的表达能力。为了解决这些挑战,我们提出了一种神经认知变分自动编码器(Neurocognitive Variational Autoencoder,NCVA),将高维 EEG 与认知模型结合起来,进行生成和预测建模分析。重要的是,我们的 NCVA 既可以根据行为数据预测 EEG 信号,也可以从 EEG 信号中估计认知模型参数。这种新方法可以更全面地理解行为、大脑活动和认知过程之间的三元关系。