Suppr超能文献

合成的反向序列揭示了默认的基因组状态。

Synthetic reversed sequences reveal default genomic states.

机构信息

Institute for Systems Genetics, NYU Langone Health, New York, NY, USA.

Department of Pathology, NYU Langone Health, New York, NY, USA.

出版信息

Nature. 2024 Apr;628(8007):373-380. doi: 10.1038/s41586-024-07128-2. Epub 2024 Mar 6.

Abstract

Pervasive transcriptional activity is observed across diverse species. The genomes of extant organisms have undergone billions of years of evolution, making it unclear whether these genomic activities represent effects of selection or 'noise'. Characterizing default genome states could help understand whether pervasive transcriptional activity has biological meaning. Here we addressed this question by introducing a synthetic 101-kb locus into the genomes of Saccharomyces cerevisiae and Mus musculus and characterizing genomic activity. The locus was designed by reversing but not complementing human HPRT1, including its flanking regions, thus retaining basic features of the natural sequence but ablating evolved coding or regulatory information. We observed widespread activity of both reversed and native HPRT1 loci in yeast, despite the lack of evolved yeast promoters. By contrast, the reversed locus displayed no activity at all in mouse embryonic stem cells, and instead exhibited repressive chromatin signatures. The repressive signature was alleviated in a locus variant lacking CpG dinucleotides; nevertheless, this variant was also transcriptionally inactive. These results show that synthetic genomic sequences that lack coding information are active in yeast, but inactive in mouse embryonic stem cells, consistent with a major difference in 'default genomic states' between these two divergent eukaryotic cell types, with implications for understanding pervasive transcription, horizontal transfer of genetic information and the birth of new genes.

摘要

广泛存在的转录活性在不同物种中都有观察到。现存生物的基因组经历了数十亿年的进化,因此不清楚这些基因组活动是选择的结果还是“噪声”。描述默认的基因组状态有助于理解广泛存在的转录活性是否具有生物学意义。在这里,我们通过将一个合成的 101kb 基因座引入酿酒酵母和小鼠的基因组中,并对基因组活性进行了表征,从而解决了这个问题。该基因座通过反转但不互补人类 HPRT1 及其侧翼区域来设计,从而保留了自然序列的基本特征,但消除了进化的编码或调控信息。我们观察到,尽管缺乏进化的酵母启动子,但反转和天然 HPRT1 基因座在酵母中都广泛活跃。相比之下,反转基因座在小鼠胚胎干细胞中完全没有活性,而是表现出抑制性染色质特征。在缺乏 CpG 二核苷酸的基因座变体中,抑制性特征得到缓解;然而,该变体也没有转录活性。这些结果表明,缺乏编码信息的合成基因组序列在酵母中是活跃的,但在小鼠胚胎干细胞中是不活跃的,这与这两种不同的真核细胞类型之间“默认基因组状态”的主要差异一致,这对理解广泛的转录、遗传信息的水平转移和新基因的诞生具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3029/11006607/1f9420b01031/41586_2024_7128_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验