Suppr超能文献

血浆细胞外囊泡转录组谱分析可实现对肿瘤特异性转录组和分子亚型的可靠注释。

Transcriptomic Profiling of Plasma Extracellular Vesicles Enables Reliable Annotation of the Cancer-Specific Transcriptome and Molecular Subtype.

机构信息

Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas.

Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.

出版信息

Cancer Res. 2024 May 15;84(10):1719-1732. doi: 10.1158/0008-5472.CAN-23-4070.

Abstract

UNLABELLED

Longitudinal monitoring of patients with advanced cancers is crucial to evaluate both disease burden and treatment response. Current liquid biopsy approaches mostly rely on the detection of DNA-based biomarkers. However, plasma RNA analysis can unleash tremendous opportunities for tumor state interrogation and molecular subtyping. Through the application of deep learning algorithms to the deconvolved transcriptomes of RNA within plasma extracellular vesicles (evRNA), we successfully predicted consensus molecular subtypes in patients with metastatic colorectal cancer. Analysis of plasma evRNA also enabled monitoring of changes in transcriptomic subtype under treatment selection pressure and identification of molecular pathways associated with recurrence. This approach also revealed expressed gene fusions and neoepitopes from evRNA. These results demonstrate the feasibility of using transcriptomic-based liquid biopsy platforms for precision oncology approaches, spanning from the longitudinal monitoring of tumor subtype changes to the identification of expressed fusions and neoantigens as cancer-specific therapeutic targets, sans the need for tissue-based sampling.

SIGNIFICANCE

The development of an approach to interrogate molecular subtypes, cancer-associated pathways, and differentially expressed genes through RNA sequencing of plasma extracellular vesicles lays the foundation for liquid biopsy-based longitudinal monitoring of patient tumor transcriptomes.

摘要

无标签

对晚期癌症患者进行纵向监测对于评估疾病负担和治疗反应至关重要。目前的液体活检方法主要依赖于基于 DNA 的生物标志物检测。然而,血浆 RNA 分析可为肿瘤状态分析和分子亚型分析带来巨大的机会。通过将深度学习算法应用于血浆细胞外囊泡(evRNA)中 RNA 的去卷积转录组,我们成功预测了转移性结直肠癌患者的共识分子亚型。对血浆 evRNA 的分析还能够在治疗选择压力下监测转录组亚型的变化,并鉴定与复发相关的分子途径。这种方法还揭示了 evRNA 中的表达基因融合和新抗原。这些结果证明了使用基于转录组的液体活检平台进行精准肿瘤学方法的可行性,涵盖了从肿瘤亚型变化的纵向监测到鉴定表达融合和新抗原作为癌症特异性治疗靶点,而无需进行基于组织的采样。

意义

通过对血浆细胞外囊泡的 RNA 进行测序来探究分子亚型、癌症相关途径和差异表达基因的方法为基于液体活检的患者肿瘤转录组的纵向监测奠定了基础。

相似文献

4
Extracellular Vesicles in Cancer Detection: Hopes and Hypes.细胞外囊泡在癌症检测中的应用:希望与炒作。
Trends Cancer. 2021 Feb;7(2):122-133. doi: 10.1016/j.trecan.2020.09.003. Epub 2020 Sep 30.

本文引用的文献

2
Inferring gene expression from cell-free DNA fragmentation profiles.从游离 DNA 片段化特征推断基因表达。
Nat Biotechnol. 2022 Apr;40(4):585-597. doi: 10.1038/s41587-022-01222-4. Epub 2022 Mar 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验