文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用机器学习方法对缺血性和非缺血性心肌病进行心脏磁共振电影成像鉴别。

Cine-cardiac magnetic resonance to distinguish between ischemic and non-ischemic cardiomyopathies: a machine learning approach.

机构信息

Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato s.s. 554 Monserrato, 09045, Cagliari, Italy.

Ospedale General Regionale F. Miulli, Acquaviva Delle Fonti, Italy.

出版信息

Eur Radiol. 2024 Sep;34(9):5691-5704. doi: 10.1007/s00330-024-10640-8. Epub 2024 Mar 7.


DOI:10.1007/s00330-024-10640-8
PMID:38451322
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11364683/
Abstract

OBJECTIVE: This work aimed to derive a machine learning (ML) model for the differentiation between ischemic cardiomyopathy (ICM) and non-ischemic cardiomyopathy (NICM) on non-contrast cardiovascular magnetic resonance (CMR). METHODS: This retrospective study evaluated CMR scans of 107 consecutive patients (49 ICM, 58 NICM), including atrial and ventricular strain parameters. We used these data to compare an explainable tree-based gradient boosting additive model with four traditional ML models for the differentiation of ICM and NICM. The models were trained and internally validated with repeated cross-validation according to discrimination and calibration. Furthermore, we examined important variables for distinguishing between ICM and NICM. RESULTS: A total of 107 patients and 38 variables were available for the analysis. Of those, 49 were ICM (34 males, mean age 60 ± 9 years) and 58 patients were NICM (38 males, mean age 56 ± 19 years). After 10 repetitions of the tenfold cross-validation, the proposed model achieved the highest area under curve (0.82, 95% CI [0.47-1.00]) and lowest Brier score (0.19, 95% CI [0.13-0.27]), showing competitive diagnostic accuracy and calibration. At the Youden's index, sensitivity was 0.72 (95% CI [0.68-0.76]), the highest of all. Analysis of predictions revealed that both atrial and ventricular strain CMR parameters were important for the identification of ICM patients. CONCLUSION: The current study demonstrated that using a ML model, multi chamber myocardial strain, and function on non-contrast CMR parameters enables the discrimination between ICM and NICM with competitive diagnostic accuracy. CLINICAL RELEVANCE STATEMENT: A machine learning model based on non-contrast cardiovascular magnetic resonance parameters may discriminate between ischemic and non-ischemic cardiomyopathy enabling wider access to cardiovascular magnetic resonance examinations with lower costs and faster imaging acquisition. KEY POINTS: • The exponential growth in cardiovascular magnetic resonance examinations may require faster and more cost-effective protocols. • Artificial intelligence models can be utilized to distinguish between ischemic and non-ischemic etiologies. • Machine learning using non-contrast CMR parameters can effectively distinguish between ischemic and non-ischemic cardiomyopathies.

摘要

目的:本研究旨在利用非对比心血管磁共振(CMR)建立机器学习(ML)模型,对缺血性心肌病(ICM)和非缺血性心肌病(NICM)进行鉴别诊断。

方法:本回顾性研究纳入了 107 例连续患者(49 例 ICM,58 例 NICM)的 CMR 扫描资料,包括心房和心室应变参数。我们使用这些数据比较了可解释树基梯度提升加性模型与四种传统 ML 模型在 ICM 和 NICM 鉴别诊断中的应用。根据判别和校准情况,采用重复交叉验证对模型进行训练和内部验证。此外,我们还研究了区分 ICM 和 NICM 的重要变量。

结果:共纳入 107 例患者和 38 个变量进行分析。其中,49 例为 ICM(34 例男性,平均年龄 60±9 岁),58 例为 NICM(38 例男性,平均年龄 56±19 岁)。经过 10 次 10 折交叉验证,提出的模型获得了最高的曲线下面积(0.82,95%CI [0.47-1.00])和最低的 Brier 评分(0.19,95%CI [0.13-0.27]),显示出有竞争力的诊断准确性和校准度。在约登指数处,敏感性为 0.72(95%CI [0.68-0.76]),为所有指标中最高。预测分析表明,心房和心室应变 CMR 参数对 ICM 患者的识别均很重要。

结论:本研究表明,使用 ML 模型和非对比 CMR 参数可实现多腔室心肌应变和功能的区分,从而以有竞争力的诊断准确性对 ICM 和 NICM 进行鉴别诊断。

临床相关性声明:基于非对比心血管磁共振参数的机器学习模型可鉴别缺血性和非缺血性心肌病,使更多患者能够接受成本更低、成像采集速度更快的心血管磁共振检查。

关键点:

  1. 心血管磁共振检查的指数级增长可能需要更快、更具成本效益的方案。
  2. 人工智能模型可用于区分缺血性和非缺血性病因。
  3. 使用非对比 CMR 参数的机器学习可以有效地鉴别缺血性和非缺血性心肌病。
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b3c/11364683/ab9bfac68631/330_2024_10640_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b3c/11364683/4ea6a48117d6/330_2024_10640_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b3c/11364683/548d45f34e3b/330_2024_10640_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b3c/11364683/34bde19916dc/330_2024_10640_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b3c/11364683/381cf3b8d2a8/330_2024_10640_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b3c/11364683/ab9bfac68631/330_2024_10640_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b3c/11364683/4ea6a48117d6/330_2024_10640_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b3c/11364683/548d45f34e3b/330_2024_10640_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b3c/11364683/34bde19916dc/330_2024_10640_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b3c/11364683/381cf3b8d2a8/330_2024_10640_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b3c/11364683/ab9bfac68631/330_2024_10640_Fig5_HTML.jpg

相似文献

[1]
Cine-cardiac magnetic resonance to distinguish between ischemic and non-ischemic cardiomyopathies: a machine learning approach.

Eur Radiol. 2024-9

[2]
Does stress perfusion imaging improve the diagnostic accuracy of late gadolinium enhanced cardiac magnetic resonance for establishing the etiology of heart failure?

BMC Cardiovasc Disord. 2017-4-8

[3]
Integration of Cine-cardiac Magnetic Resonance Radiomics and Machine Learning for Differentiating Ischemic and Dilated Cardiomyopathy.

Acad Radiol. 2024-7

[4]
Quantitative deformation analysis differentiates ischaemic and non-ischaemic cardiomyopathy: sub-group analysis of the VINDICATE trial.

Eur Heart J Cardiovasc Imaging. 2018-7-1

[5]
Differentiating Nonischemic Dilated Cardiomyopathy With Incidental Infarction From Ischemic Cardiomyopathy by Geometric Indices Derived From Cardiovascular Magnetic Resonance.

J Thorac Imaging. 2021-7-1

[6]
Left ventricular geometric remodeling in relation to non-ischemic scar pattern on cardiac magnetic resonance imaging.

Int J Cardiovasc Imaging. 2014-12

[7]
Myocardial Deformation Pattern Differs between Ischemic and Non-ischemic Dilated Cardiomyopathy: The Diagnostic Value of Longitudinal Strains.

Ultrasound Med Biol. 2020-2

[8]
Machine learning approach in diagnosing Takotsubo cardiomyopathy: The role of the combined evaluation of atrial and ventricular strain, and parametric mapping.

Int J Cardiol. 2023-2-15

[9]
Cardiovascular Magnetic Resonance to Predict Appropriate Implantable Cardioverter Defibrillator Therapy in Ischemic and Nonischemic Cardiomyopathy Patients Using Late Gadolinium Enhancement Border Zone: Comparison of Four Analysis Methods.

Circ Cardiovasc Imaging. 2017-9

[10]
Prognostic value of left atrial size and function by cardiac magnetic resonance in non-ischemic cardiomyopathy.

Int J Cardiovasc Imaging. 2024-10

引用本文的文献

[1]
An Innovative Artificial Intelligence Classification Model for Non-Ischemic Cardiomyopathy Utilizing Cardiac Biomechanics Derived from Magnetic Resonance Imaging.

Bioengineering (Basel). 2025-6-19

[2]
Challenges in clinical translation of cardiac magnetic resonance imaging radiomics in non-ischemic cardiomyopathy: a narrative review.

Cardiovasc Diagn Ther. 2024-12-31

[3]
Assessing Acute Pericarditis with T1 Mapping: A Supportive Contrast-Free CMR Marker.

Tomography. 2024-11-27

[4]
Revolutionizing Cardiac Imaging: A Scoping Review of Artificial Intelligence in Echocardiography, CTA, and Cardiac MRI.

J Imaging. 2024-8-8

本文引用的文献

[1]
Epicardial fat volume assessed with cardiac magnetic resonance imaging in patients with Takotsubo cardiomyopathy.

Eur J Radiol. 2023-3

[2]
Artificial Intelligence for Contrast-Free MRI: Scar Assessment in Myocardial Infarction Using Deep Learning-Based Virtual Native Enhancement.

Circulation. 2022-11-15

[3]
2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death.

Eur Heart J. 2022-10-21

[4]
Evaluation of Right Ventricular Myocardial Mechanics by 2- and 3-Dimensional Speckle-Tracking Echocardiography in Patients With an Ischemic or Non-ischemic Etiology of End-Stage Heart Failure.

Front Cardiovasc Med. 2022-5-25

[5]
Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection.

Comput Biol Med. 2022-2

[6]
Right ventricular free wall strain in acutely decompensated heart failure patients with ischemic and non-ischemic cardiomyopathy.

Echocardiography. 2021-10

[7]
2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.

Eur Heart J. 2021-9-21

[8]
Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers.

Radiol Artif Intell. 2020-3-25

[9]
Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study.

J Am Coll Cardiol. 2020-12-22

[10]
Evaluating the plausible application of advanced machine learnings in exploring determinant factors of present pandemic: A case for continent specific COVID-19 analysis.

Sci Total Environ. 2021-4-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索