The First Affiliated Hospital, Department of Radiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China (J.D., B.L., G.L., H.Z.); The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China (J.D., Y.L., Y.Y., J.Z., H.T.).
School of Cyberspace Security, Guangzhou University, Guangzhou 510006, China (L.Z.).
Acad Radiol. 2024 Jul;31(7):2704-2714. doi: 10.1016/j.acra.2024.03.032. Epub 2024 May 3.
This study aims to evaluate the capability of machine learning algorithms in utilizing radiomic features extracted from cine-cardiac magnetic resonance (CMR) sequences for differentiating between ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM).
This retrospective study included 115 cardiomyopathy patients subdivided into ICM (n = 64) and DCM cohorts (n = 51). We collected invasive clinical (IC), noninvasive clinical (NIC), and combined clinical (CC) feature subsets. Radiomic features were extracted from regions of interest (ROIs) in the left ventricle (LV), LV cavity (LVC), and myocardium (MYO). We tested 10 classical machine learning classifiers and validated them through fivefold cross-validation. We compared the efficacy of clinical feature-based models and radiomics-based models to identify the superior diagnostic approach.
In the validation set, the Gaussian naive Bayes (GNB) model outperformed the other models in all categories, with areas under the curve (AUCs) of 0.879 for IC_GNB, 0.906 for NIC_GNB, and 0.906 for CC_GNB. Among the radiomics models, the MYO_LASSOCV_MLP model demonstrated the highest AUC (0.919). In the test set, the MYO_RFECV_GNB radiomics model achieved the highest AUC (0.857), surpassing the performance of the three clinical feature models (IC_GNB: 0.732; NIC_GNB: 0.75; CC_GNB: 0.786).
Radiomics models leveraging MYO images from cine-CMR exhibit promising potential for differentiating ICM from DCM, indicating the significant clinical application scope of such models.
The integration of radiomics models and machine learning methods utilizing cine-CMR sequences enhances the diagnostic capability to distinguish between ICM and DCM, minimizes examination risks for patients, and potentially reduces the duration of medical imaging procedures.
本研究旨在评估机器学习算法利用电影心脏磁共振(CMR)序列提取的放射组学特征来区分缺血性心肌病(ICM)和扩张型心肌病(DCM)的能力。
本回顾性研究纳入了 115 名心肌病患者,分为 ICM(n=64)和 DCM 队列(n=51)。我们收集了侵袭性临床(IC)、非侵袭性临床(NIC)和综合临床(CC)特征子集。从左心室(LV)、LV 腔(LVC)和心肌(MYO)的感兴趣区域(ROI)中提取放射组学特征。我们测试了 10 种经典机器学习分类器,并通过五重交叉验证进行了验证。我们比较了基于临床特征的模型和基于放射组学的模型的效果,以确定更优的诊断方法。
在验证集中,高斯朴素贝叶斯(GNB)模型在所有类别中均优于其他模型,IC_GNB、NIC_GNB 和 CC_GNB 的曲线下面积(AUC)分别为 0.879、0.906 和 0.906。在放射组学模型中,MYO_LASSOCV_MLP 模型的 AUC 最高(0.919)。在测试集中,基于 MYO 的 RFECV_GNB 放射组学模型的 AUC 最高(0.857),优于三种临床特征模型的性能(IC_GNB:0.732;NIC_GNB:0.75;CC_GNB:0.786)。
利用电影 CMR 的 MYO 图像的放射组学模型在区分 ICM 和 DCM 方面具有很大的潜力,表明这些模型具有显著的临床应用范围。
放射组学模型与机器学习方法的结合利用电影 CMR 序列提高了诊断能力,有助于区分 ICM 和 DCM,降低了患者检查风险,并可能缩短医学成像程序的时间。