Suppr超能文献

基于美敦力 HUGO™ RAS 手术机器人经验,评估不同方法以定义新的机器人培训模拟器专家基准分数。

Evaluation of different approaches to define expert benchmark scores for new robotic training simulators based on the Medtronic HUGO™ RAS surgical robot experience.

机构信息

Surgical Science, Seattle, WA, USA.

University of Washington School of Medicine, Seattle, WA, USA.

出版信息

J Robot Surg. 2024 Mar 7;18(1):113. doi: 10.1007/s11701-024-01868-z.

Abstract

New robot-assisted surgery platforms being developed will be required to have proficiency-based simulation training available. Scoring methodologies and performance feedback for trainees are currently not consistent across all robotic simulator platforms. Also, there are virtually no prior publications on how VR simulation passing benchmarks have been established. This paper compares methods evaluated to determine the proficiency-based scoring thresholds (a.k.a. benchmarks) for the new Medtronic Hugo™ RAS robotic simulator. Nine experienced robotic surgeons from multiple disciplines performed the 49 skills exercises 5 times each. The data were analyzed in 3 different ways: (1) include all data collected, (2) exclude first sessions, (3) exclude outliers. Eliminating the first session discounts becoming familiar with the exercise. Discounting outliers allows removal of potentially erroneous data that may be due to technical issues, unexpected distractions, etc. Outliers were identified using a common statistical technique involving the interquartile range of the data. Using each method above, mean and standard deviations were calculated, and the benchmark was set at a value of 1 standard deviation above the mean. In comparison to including all the data, when outliers are excluded, fewer data points are removed than just excluding first sessions, and the metric benchmarks are made more difficult by an average of 11%. When first sessions are excluded, the metric benchmarks are made easier by an average of about 2%. In comparison with benchmarks calculated using all data points, excluding outliers resulted in the biggest change making the benchmarks more challenging. We determined that this method provided the best representation of the data. These benchmarks should be validated with future clinical training studies.

摘要

正在开发的新型机器人辅助手术平台将需要具备基于熟练度的模拟培训。目前,所有机器人模拟器平台的评分方法和学员表现反馈都不一致。此外,几乎没有关于如何建立 VR 模拟通过基准的先前出版物。本文比较了评估方法,以确定新的美敦力 Hugo™ RAS 机器人模拟器的基于熟练度的评分阈值(即基准)。来自多个学科的 9 名经验丰富的机器人外科医生每人进行了 49 项技能练习 5 次。数据分析采用了 3 种不同的方法:(1)包含所有收集的数据,(2)排除首次练习,(3)排除异常值。排除首次练习会忽略熟悉练习的过程。排除异常值可以去除可能由于技术问题、意外干扰等原因导致的错误数据。异常值是通过涉及数据四分位距的常用统计技术确定的。使用上述每种方法,计算平均值和标准差,并将基准设定为平均值以上 1 个标准差的值。与包含所有数据相比,当排除异常值时,与仅排除首次练习相比,去除的数据点更少,平均而言,指标基准更难提高了 11%。当排除首次练习时,指标基准平均容易了约 2%。与使用所有数据点计算的基准相比,排除异常值导致基准更具挑战性,这是最大的变化。我们确定这种方法提供了数据的最佳表示。这些基准应该通过未来的临床培训研究进行验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验