Van 't Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam 1090 GD, The Netherlands.
Institute of Science and Technology Austria, Division of Mathematical and Physical Sciences, Klosterneuburg 3400, Austria.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2313162121. doi: 10.1073/pnas.2313162121. Epub 2024 Mar 7.
Water is known to play an important role in collagen self-assembly, but it is still largely unclear how water-collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H[Formula: see text]O/D[Formula: see text]O isotope effect on the hydrogen-bond strength in water to investigate the role of hydration in collagen self-assembly. We dissolve collagen in H[Formula: see text]O and D[Formula: see text]O and compare the growth kinetics and the structure of the collagen assemblies formed in these water isotopomers. Surprisingly, collagen assembly occurs ten times faster in D[Formula: see text]O than in H[Formula: see text]O, and collagen in D[Formula: see text]O self-assembles into much thinner fibrils, that form a more inhomogeneous and softer network, with a fourfold reduction in elastic modulus when compared to H[Formula: see text]O. Combining spectroscopic measurements with atomistic simulations, we show that collagen in D[Formula: see text]O is less hydrated than in H[Formula: see text]O. This partial dehydration lowers the enthalpic penalty for water removal and reorganization at the collagen-water interface, increasing the self-assembly rate and the number of nucleation centers, leading to thinner fibrils and a softer network. Coarse-grained simulations show that the acceleration in the initial nucleation rate can be reproduced by the enhancement of electrostatic interactions. These results show that water acts as a mediator between collagen monomers, by modulating their interactions so as to optimize the assembly process and, thus, the final network properties. We believe that isotopically modulating the hydration of proteins can be a valuable method to investigate the role of water in protein structural dynamics and protein self-assembly.
水在胶原蛋白自组装中起着重要作用,但水-胶原蛋白相互作用如何影响组装过程并决定纤维网络性质在很大程度上仍不清楚。在这里,我们利用 H[Formula: see text]O/D[Formula: see text]O 同位素对水中氢键强度的影响,研究水合作用在胶原蛋白自组装中的作用。我们将胶原蛋白溶解在 H[Formula: see text]O 和 D[Formula: see text]O 中,并比较在这些水同量异位素中形成的胶原蛋白组装体的生长动力学和结构。令人惊讶的是,胶原蛋白在 D[Formula: see text]O 中的组装速度比在 H[Formula: see text]O 中快十倍,并且 D[Formula: see text]O 中的胶原蛋白自组装成更细的纤维,形成更不均匀和更柔软的网络,与 H[Formula: see text]O 相比,弹性模量降低了四倍。结合光谱测量和原子模拟,我们表明 D[Formula: see text]O 中的胶原蛋白比 H[Formula: see text]O 中的胶原蛋白水合程度更低。这种部分脱水降低了胶原-水界面上水去除和重排的焓罚,从而提高了自组装速率和成核中心的数量,导致纤维更细,网络更软。粗粒化模拟表明,静电相互作用的增强可以再现初始成核速率的加速。这些结果表明,水作为胶原蛋白单体之间的介质,通过调节它们的相互作用来优化组装过程,从而优化最终的网络性质。我们相信,通过同位素调节蛋白质的水合作用,可以成为研究水在蛋白质结构动力学和蛋白质自组装中的作用的一种有价值的方法。